Drag Decomposition Using Partial-Pressure Fields: ONERA M6 Wing

Drag decomposition has classically been undertaken using a far-field approach both from a wind-tunnel testing and computational fluid dynamics standpoint. It has been suggested by Schmitz (“Drag Decomposition Using Partial-Pressure Fields in the Compressible Navier-Stokes Equations,” AIAA Journal, V...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIAA journal 2022-05, Vol.60 (5), p.2941-2952
Hauptverfasser: Hart, Pierce L., Schmitz, Sven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Drag decomposition has classically been undertaken using a far-field approach both from a wind-tunnel testing and computational fluid dynamics standpoint. It has been suggested by Schmitz (“Drag Decomposition Using Partial-Pressure Fields in the Compressible Navier-Stokes Equations,” AIAA Journal, Vol. 57, No. 5, 2019, pp. 2030–2038) that a decomposition of static pressure into partial pressure fields can allow one to decompose a computational fluids dynamics solution in the near field. This paper covers the implementation process of partial pressure fields on the ONERA M6 wing at conditions relevant to commercial transport aircraft. Relations between partial pressure field decomposition, the classical far-field theory, and physical drag sources are discussed. It is demonstrated that the near-field partial pressure field decomposition is equivalent to classical far-field analysis. In transonic flow, a new method to compute wave drag using a combination of both partial pressure fields and the far-field method is demonstrated.
ISSN:0001-1452
1533-385X
DOI:10.2514/1.J061152