Unsteady Shock Motion in a Transonic Flow over a Wall-Mounted Hemisphere
Particle image velocimetry measurements have been conducted for a Mach 0.8 flow over a wall-mounted hemisphere with a strongly separated wake. The shock foot was found to typically sit just forward of the apex of the hemisphere and move within a range of about ±10 deg. Conditional averages based up...
Gespeichert in:
Veröffentlicht in: | AIAA journal 2016-11, Vol.54 (11), p.3509-3515 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Particle image velocimetry measurements have been conducted for a Mach 0.8 flow over a wall-mounted hemisphere with a strongly separated wake. The shock foot was found to typically sit just forward of the apex of the hemisphere and move within a range of about ±10 deg. Conditional averages based upon the shock foot location show that the separation shock is positioned upstream along the hemisphere surface when reverse velocities in the recirculation region are strong and is located downstream when they are weaker. The recirculation region appears smaller when the shock is located farther downstream. No correlation was detected of the incoming boundary layer with the shock position nor with the wake recirculation velocities. These observations are consistent with recent studies concluding that, for large, strong separation regions, the dominant mechanism is the instability of the separated flow rather than a direct influence of the incoming boundary layer. |
---|---|
ISSN: | 0001-1452 1533-385X |
DOI: | 10.2514/1.J055040 |