Have tropical cyclones been feeding more extreme rainfall?

We have conducted a study of the relationship between tropical cyclone (TC) and extreme rain events using GPCP and TRMM rainfall data ; and storm track data for July through November (JASON) in the North Atlantic (NAT) and the western North Pacific (WNP). Extreme rain events are defined in terms of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research - Atmospheres 2008-12, Vol.113 (D23), p.D23113-n/a
Hauptverfasser: Lau, K.-M., Zhou, Y. P., Wu, H.-T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have conducted a study of the relationship between tropical cyclone (TC) and extreme rain events using GPCP and TRMM rainfall data ; and storm track data for July through November (JASON) in the North Atlantic (NAT) and the western North Pacific (WNP). Extreme rain events are defined in terms of percentile rainrate, and TC-gain by rainfall associated with a named TC. Results show that climatologically, 8% of rain events and 17% of the total rain amount in NAT are accounted by TCs, compared to 9% of rain events, and 21% of rain amount in WN.P. The fractional contribution of accumulated TC-rain to total rain, Omega, increases nearly linearly as a function of rainrate. Extending the analyses using GPCP pentad data for 1979-2005, and for the post-SSM/I period (1988-2005), we find that while there is no significant trend in the total JASON rainfall over NAT or WNP there is a positive significant trend in heavy rain over both basins for the 1979-2005 period, but not for the post-SSM/I period. Trend analyses of Omega for bout periods indicate that TCs have been feeding increasingly more to rainfall extremes in NAT, where the expansion of the warm pool area can explain slightly more than 50% of the change in observed trend in total TC rainfall. In. WNP, trend signals for Omega are mixed, and the loner term relationship between TC rain and warm pool area is strongly influenced by interannual and interdecadal variability.
ISSN:0148-0227
2169-897X
2156-2202
2169-8996
DOI:10.1029/2008JD009963