Unraveling the Core–Shell Structure of Ligand-Capped Sn/SnO x Nanoparticles by Surface-Enhanced Nuclear Magnetic Resonance, Mössbauer, and X‑ray Absorption Spectroscopies

A particularly difficult challenge in the chemistry of nanomaterials is the detailed structural and chemical analysis of multicomponent nano-objects. This is especially true for the determination of spatially resolved information. In this study, we demonstrate that dynamic nuclear polarization surfa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2014-03, Vol.8 (3), p.2639-2648
Hauptverfasser: Protesescu, Loredana, Rossini, Aaron J, Kriegner, Dominik, Valla, Maxence, de Kergommeaux, Antoine, Walter, Marc, Kravchyk, Kostiantyn V, Nachtegaal, Maarten, Stangl, Julian, Malaman, Bernard, Reiss, Peter, Lesage, Anne, Emsley, Lyndon, Copéret, Christophe, Kovalenko, Maksym V
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A particularly difficult challenge in the chemistry of nanomaterials is the detailed structural and chemical analysis of multicomponent nano-objects. This is especially true for the determination of spatially resolved information. In this study, we demonstrate that dynamic nuclear polarization surface-enhanced solid-state NMR spectroscopy (DNP-SENS), which provides selective and enhanced NMR signal collection from the (near) surface regions of a sample, can be used to resolve the core–shell structure of a nanoparticle. Li-ion anode materials, monodisperse 10–20 nm large tin nanoparticles covered with a ∼3 nm thick layer of native oxides, were used in this case study. DNP-SENS selectively enhanced the weak 119Sn NMR signal of the amorphous surface SnO2 layer. Mössbauer and X-ray absorption spectroscopies identified a subsurface SnO phase and quantified the atomic fractions of both oxides. Finally, temperature-dependent X-ray diffraction measurements were used to probe the metallic β-Sn core and indicated that even after 8 months of storage at 255 K there are no signs of conversion of the metallic β-Sn core into a brittle semiconducting α-phase, a phase transition which normally occurs in bulk tin at 286 K (13 °C). Taken together, these results indicate that Sn/SnO x nanoparticles have core/shell1/shell2 structure of Sn/SnO/SnO2 phases. The study suggests that DNP-SENS experiments can be carried on many types of uniform colloidal nanomaterials containing NMR-active nuclei, in the presence of either hydrophilic (ion-capped surfaces) or hydrophobic (capping ligands with long hydrocarbon chains) surface functionalities.
ISSN:1936-0851
1936-086X
DOI:10.1021/nn406344n