Bi1–x Sb x Alloy Nanocrystals: Colloidal Synthesis, Charge Transport, and Thermoelectric Properties

Nanostructured Bi1–x Sb x alloys constitute a convenient system to study charge transport in a nanostructured narrow-gap semiconductor with promising thermoelectric properties. In this work, we developed the colloidal synthesis of monodisperse sub-10 nm Bi1–x Sb x alloy nanocrystals (NCs) with contr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2013-11, Vol.7 (11), p.10296-10306
Hauptverfasser: Zhang, Hao, Son, Jae Sung, Jang, Jaeyoung, Lee, Jong-Soo, Ong, Wee-Liat, Malen, Jonathan A, Talapin, Dmitri V
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanostructured Bi1–x Sb x alloys constitute a convenient system to study charge transport in a nanostructured narrow-gap semiconductor with promising thermoelectric properties. In this work, we developed the colloidal synthesis of monodisperse sub-10 nm Bi1–x Sb x alloy nanocrystals (NCs) with controllable size and compositions. The surface chemistry of Bi1–x Sb x NCs was tailored with inorganic ligands to improve the interparticle charge transport as well as to control the carrier concentration. Temperature-dependent (10–300 K) electrical measurements were performed on the Bi1–x Sb x NC based pellets to investigate the effect of surface chemistry and grain size (∼10–40 nm) on their charge transport properties. The Hall effect measurements revealed that the temperature dependence of carrier mobility and concentration strongly depended on the grain size and the surface chemistry, which was different from the reported bulk behavior. At low temperatures, electron mobility in nanostructured Bi1–x Sb x was directly proportional to the average grain size, while the concentration of free carriers was inversely proportional to the grain size. We propose a model explaining such behavior. Preliminary measurements of thermoelectric properties showed a ZT value comparable to those of bulk Bi1–x Sb x alloys at 300 K, suggesting a potential of Bi1–x Sb x NCs for low-temperature thermoelectric applications.
ISSN:1936-0851
1936-086X
DOI:10.1021/nn404692s