He@Mo6Cl8F6: A Stable Complex of Helium

The electronic structure and chemical stability of the endo helium cluster, He@Mo6Cl8F6, were investigated carefully by using density function theory. The results show that the cluster is significantly different from typical van der Waals systems: the bond distance between helium and molybdenum is o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2010-01, Vol.114 (1), p.646-651
Hauptverfasser: Zou, Wenli, Liu, Yang, Liu, Wenjian, Wang, Ting, Boggs, James E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The electronic structure and chemical stability of the endo helium cluster, He@Mo6Cl8F6, were investigated carefully by using density function theory. The results show that the cluster is significantly different from typical van der Waals systems: the bond distance between helium and molybdenum is only about 1.89 Å. Moreover, the bonding analysis clearly reveals considerable charge and bond order on the helium atom and bond order for He−Mo. The dissociation of He@Mo6Cl8F6 to He + Mo6Cl8F6 is prohibited by a barrier of 0.86 eV (19.8 kcal/mol), indicating that the cluster is chemically stable. However, no covalent He−Mo bonding was found so it is an analogue of He@adam. Comparison was also made with the isoelectronic system of [Mo6Cl8F6]2−.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp908254r