Photoluminescence Properties of CeO2:Eu3+ Nanoparticles Synthesized by a Sol-Gel Method
Nanocrystalline Eu3+-doped CeO2, CeO2, Sm3+-doped CeO2, and Li+, Eu3+-codoped CeO2 samples were prepared through a sol−gel process. The structure and the optical properties of the samples were characterized by X-ray diffraction, diffuse reflection spectra, and photoluminescence spectra. No luminesce...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2009-01, Vol.113 (2), p.610-617 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nanocrystalline Eu3+-doped CeO2, CeO2, Sm3+-doped CeO2, and Li+, Eu3+-codoped CeO2 samples were prepared through a sol−gel process. The structure and the optical properties of the samples were characterized by X-ray diffraction, diffuse reflection spectra, and photoluminescence spectra. No luminescence was observed for nanocrystalline CeO2. The systematic investigation shows that the broad band in the excitation spectrum of CeO2:Eu3+ comes from the charge transfer (CT) transition from O2− to Ce4+, not from the oxygen vacancy, or from the CT of O2− to Eu3+. Upon increasing the fired temperature from 600 to 800 °C, the excitation spectrum shifts to lower energy. With increasing concentrations of Eu3+ up to 1% in CeO2, red shifts of the excitation spectra are observed; however, when the concentration of Eu3+ increases to 5% and 10%, blue shifts occur. The emission spectrum shows that the symmetry of the Eu3+ site becomes lower with increasing Eu3+. Based on the dielectric theory of complex crystals, the environmental factor (h e) and the dielectric definition of average energy gap around the centers of Eu3+ are calculated. The reasons for the shifts of the excitation spectra are discussed in detail. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/jp808688w |