Indication of a Very Large Proton Diffusion in Ice Ih. III. Fluorescence Quenching of 1-Naphthol Derivatives

The effects of excess protons on the fluorescence quenching process of 1-naphthol-4-sulfonate (1N4S) and 1-naphthol-3-sulfonate (1N3S) in methanol-doped ice samples were studied by employing a time-resolved emission technique. We found that the fluorescence quenching of the deprotonated form RO−* of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2009-02, Vol.113 (6), p.959-974
Hauptverfasser: Uritski, Anna, Presiado, Itay, Huppert, Dan
Format: Artikel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of excess protons on the fluorescence quenching process of 1-naphthol-4-sulfonate (1N4S) and 1-naphthol-3-sulfonate (1N3S) in methanol-doped ice samples were studied by employing a time-resolved emission technique. We found that the fluorescence quenching of the deprotonated form RO−* of both photoacids by protonation is very efficient in ice, whereas in liquid water the proton fluorescence quenching is rather small. Using the Smoluchowski diffusion-assisted binary collision model under certain assumptions and approximations, we found that the calculated proton diffusion constant in ice in the temperature range of 240−260 K was 10 times greater than that of water at 295 K.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp806242a