Morphology, Stoichiometry, and Interface Structure of CeO2 Ultrathin Films on Pt(111)
Studies of model systems based on cerium oxide are important to improve current understanding of the properties of ceria-based materials, which find wide application based on the ability of cerium oxide to store, release, and transport oxygen. We report a study of CeO2 ultrathin films grown on the P...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2011-06, Vol.115 (21), p.10718-10726 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Studies of model systems based on cerium oxide are important to improve current understanding of the properties of ceria-based materials, which find wide application based on the ability of cerium oxide to store, release, and transport oxygen. We report a study of CeO2 ultrathin films grown on the Pt(111) surface by reactive deposition of Ce using molecular or atomic oxygen as the oxidizing gas. High-temperature treatments in O2 allowed us to obtain epitaxial structures with a very good quality in terms of morphology, stoichiometry, and structure. The cerium oxide films have a very flat morphology with terraces several tens of nanometers wide. The stoichiometry of the films is mainly CeO2, and the concentration of Ce3+ ions in the film can be reversibly increased by temperature treatments. We propose that the Pt substrate oxidation has a determinant role for the epitaxial stabilization of ceria films. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/jp201139y |