ZnTaO2N: Stabilized High-Temperature LiNbO3‑type Structure

By using a high-pressure reaction, we prepared a new oxynitride ZnTaO2N that crystallizes in a centrosymmetric (R3̅c) high-temperature LiNbO3-type structure (HTLN-type). The stabilization of the HTLN-type structure down to low temperatures (at least 20 K) makes it possible to investigate not only th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2016-12, Vol.138 (49), p.15950-15955
Hauptverfasser: Kuno, Yoshinori, Tassel, Cédric, Fujita, Koji, Batuk, Dmitry, Abakumov, Artem M, Shitara, Kazuki, Kuwabara, Akihide, Moriwake, Hiroki, Watabe, Daichi, Ritter, Clemens, Brown, Craig M, Yamamoto, Takafumi, Takeiri, Fumitaka, Abe, Ryu, Kobayashi, Yoji, Tanaka, Katsuhisa, Kageyama, Hiroshi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By using a high-pressure reaction, we prepared a new oxynitride ZnTaO2N that crystallizes in a centrosymmetric (R3̅c) high-temperature LiNbO3-type structure (HTLN-type). The stabilization of the HTLN-type structure down to low temperatures (at least 20 K) makes it possible to investigate not only the stability of this phase, but also the phase transition to a noncentrosymmetric (R3c) LiNbO3-type structure (LN-type) which is yet to be clarified. Synchrotron and neutron diffraction studies in combination with transmission electron microscopy show that Zn is located at a disordered 12c site instead of 6a, implying an order–disorder mechanism of the phase transition. It is found that the closed d-shell of Zn2+, as well as the high-valent Ta5+ ion, is responsible for the stabilization of the HTLN-type structure, affording a novel quasitriangular ZnO2N coordination. Interestingly, only 3% Zn substitution for MnTaO2N induces a phase transition from LN- to HTLN-type structure, implying the proximity in energy between the two structural types, which is supported by the first-principles calculations.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.6b08635