Construction of Thiadiazole-Bridged sp2‑Carbon-Conjugated Covalent Organic Frameworks with Diminished Excitation Binding Energy Toward Superior Photocatalysis

Sp2-carbon-conjugated covalent organic frameworks (sp2c-COFs) have emerged as promising platforms for phototo–chemical energy conversion due to their tailorable optoelectronic properties, in-plane π-conjugations, and robust structures. However, the development of sp2c-COFs in photocatalysis is still...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2024-01, Vol.146 (2), p.1318-1325
Hauptverfasser: Fu, Guangen, Yang, Denghui, Xu, Shunqi, Li, Shengxu, Zhao, Yuxiang, Yang, Haoyong, Wu, Daheng, Petkov, Petko Stoev, Lan, Zhi-An, Wang, Xinchen, Zhang, Tao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sp2-carbon-conjugated covalent organic frameworks (sp2c-COFs) have emerged as promising platforms for phototo–chemical energy conversion due to their tailorable optoelectronic properties, in-plane π-conjugations, and robust structures. However, the development of sp2c-COFs in photocatalysis is still highly hindered by their limited linkage chemistry. Herein, we report a novel thiadiazole-bridged sp2c-COF (sp2c-COF-ST) synthesized by thiadiazole-mediated aldol-type polycondensation. The resultant sp2c-COF-ST demonstrates high chemical stability under strong acids and bases (12 M HCl or 12 M NaOH). The electro-deficient thiadiazole together with fully conjugated and planar skeleton endows sp2c-COF-ST with superior photoelectrochemical performance and charge-carrier separation and migration ability. As a result, when employed as a photocathode, sp2c-COF-ST exhibits a significant photocurrent up to ∼14.5 μA cm–2 at 0.3 V vs reversible hydrogen electrode (RHE) under visible-light irradiation (>420 nm), which is much higher than those analogous COFs with partial imine linkages (mix-COF-SNT ∼ 9.5 μA cm–2) and full imine linkages (imi-COF-SNNT ∼ 4.9 μA cm–2), emphasizing the importance of the structure–property relationships. Further temperature-dependent photoluminescence spectra and density functional theory calculations demonstrate that the sp2c-COF-ST has smaller exciton binding energy as well as effective mass in comparison to mix-COF-SNT and imi-COF-SNNT, which suggests that the sp2c-conjugated skeleton enhances the exciton dissociation and carrier migration under light irradiation. This work highlights the design and preparation of thiadiazole-bridged sp2c-COFs with promising photocatalytic performance.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.3c08755