Monomolecular layers and thin films of silane coupling agents by vapor-phase adsorption on oxidized aluminum
Thin films of tetraethoxysilane [TEOS], (3-bromopropyl)trimethoxysilane [BPS], trimethoxyvinylsilane [VS], and 3-(trimethoxysilyl)propyl methacrylate [TPM] on oxidized aluminum surfaces have been investigated by reflection-absorption FTIR spectroscopy, ellipsometry, contact angle, and quartz crystal...
Gespeichert in:
Veröffentlicht in: | Journal of Physical Chemistry 1992-08, Vol.96 (16), p.6707-6712 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thin films of tetraethoxysilane [TEOS], (3-bromopropyl)trimethoxysilane [BPS], trimethoxyvinylsilane [VS], and 3-(trimethoxysilyl)propyl methacrylate [TPM] on oxidized aluminum surfaces have been investigated by reflection-absorption FTIR spectroscopy, ellipsometry, contact angle, and quartz crystal microbalance (QCM) measurements. Gravimetric measurements with the QCM can reveal quantitative aspects of adsorption and film formation, even for films as thin as monolayers. Adsorption of these silane coupling agents from solution typically produces multilayer films. Vapor-phase adsorption of TEOS and TPM at room temperature results in monomolecular layers. The coupling agents VS and BPS require additional heating after the vapor-phase adsorption to initiate the hydrolysis and condensation reactions necessary for the surface attachment, which produces one to three layers. For vapor adsorbed films a packing density of 4-7 molecules/nm2 was found. The data strongly suggest that the organic moieties in several of these films have a preferential orientation on the surface; they can be viewed as two-dimensional, oligomeric siloxane networks with oriented organic chains. Subsequent heating of TPM films results in structural rearrangements; heating of TEOS results in complete condensation to SiO2 films. |
---|---|
ISSN: | 0022-3654 1541-5740 |
DOI: | 10.1021/j100195a034 |