Estimating Bulk-Composition-Dependent H2 Adsorption Energies on Cu x Pd1–x Alloy (111) Surfaces
The bulk-composition-dependent dissociative adsorption energy of hydrogen on CuPd alloys has been measured experimentally and modeled using density functional theory. The hydrogen adsorption energy cannot be simply defined by a single reactive site or as a composition weighted average of the pure me...
Gespeichert in:
Veröffentlicht in: | ACS catalysis 2015-02, Vol.5 (2), p.1020-1026 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The bulk-composition-dependent dissociative adsorption energy of hydrogen on CuPd alloys has been measured experimentally and modeled using density functional theory. The hydrogen adsorption energy cannot be simply defined by a single reactive site or as a composition weighted average of the pure metal components. We developed a modeling approach that uses a basis of active sites weighted by a model site probability distribution to estimate a bulk-composition-dependent adsorption energy. The approach includes segregation under reaction conditions. With this method, we can explain the composition-dependent adsorption energy of hydrogen on Cu-rich alloy surfaces. In Pd-rich alloys, a Pd-hydride phase may form, which results in deviations from trends on the metallic alloy surface. |
---|---|
ISSN: | 2155-5435 2155-5435 |
DOI: | 10.1021/cs501585k |