Highly Asymmetric Phthalocyanine as a Sensitizer of Graphitic Carbon Nitride for Extremely Efficient Photocatalytic H2 Production under Near-Infrared Light
Highly asymmetric zinc phthalocyanine derivative (Zn-tri-PcNc) with intense near-IR light (650–800 nm) absorption is utilized as a sensitizer to extend the spectral response region of graphitic carbon nitride (g-C3N4) from ∼450 nm to more than 800 nm. Ultraviolet–visible light (UV-vis) diffuse refle...
Gespeichert in:
Veröffentlicht in: | ACS catalysis 2014-01, Vol.4 (1), p.162-170 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng ; jpn |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Highly asymmetric zinc phthalocyanine derivative (Zn-tri-PcNc) with intense near-IR light (650–800 nm) absorption is utilized as a sensitizer to extend the spectral response region of graphitic carbon nitride (g-C3N4) from ∼450 nm to more than 800 nm. Ultraviolet–visible light (UV-vis) diffuse reflectance absorption spectra (DRS), photoluminescence (PL) spectra, time-resolved photoluminescence spectra (TRPS), and energy band structure analyses are adopted to investigate the photogenerated electron transfer process between Zn-tri-PcNc and g-C3N4 on both thermodynamics and dynamics aspects. After optimizing the photocatalytic condition and adding chenodeoxycholic acid (CDCA) as coadsorbent, Zn-tri-PcNc sensitized g-C3N4 photocatalyst shows a H2 production efficiency of 125.2 μmol h–1 under visible/near-IR-light (λ ≥ 500 nm) irradiation, corresponding to a turnover number (TON) of 5008 h–1 with an extremely high apparent quantum yield (AQY) of 1.85% at 700 nm monochromatic light irradiation. The present work should be the rarely fundamental investigation on the utilization of near-IR light of solar radiation for the photocatalytic H2 production from water splitting over a dye-sensitized semiconductor. |
---|---|
ISSN: | 2155-5435 2155-5435 |
DOI: | 10.1021/cs400863c |