Cation Gating and Relocation during the Highly Selective “Trapdoor” Adsorption of CO2 on Univalent Cation Forms of Zeolite Rho

Adsorption of CO2 and CH4 has been measured on the Na-, K-, and Cs-forms of zeolite Rho (0–9 bar; 283–333 K). Although CH4 is excluded, CO2 is readily taken up, although the uptake at low pressures decreases strongly, in the order Na+ > K+ > Cs+. Structural studies by powder X-ray diffraction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2014-03, Vol.26 (6), p.2052-2061
Hauptverfasser: Lozinska, Magdalena M, Mowat, John P. S, Wright, Paul A, Thompson, Stephen P, Jorda, Jose L, Palomino, Miguel, Valencia, Susana, Rey, Fernando
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2061
container_issue 6
container_start_page 2052
container_title Chemistry of materials
container_volume 26
creator Lozinska, Magdalena M
Mowat, John P. S
Wright, Paul A
Thompson, Stephen P
Jorda, Jose L
Palomino, Miguel
Valencia, Susana
Rey, Fernando
description Adsorption of CO2 and CH4 has been measured on the Na-, K-, and Cs-forms of zeolite Rho (0–9 bar; 283–333 K). Although CH4 is excluded, CO2 is readily taken up, although the uptake at low pressures decreases strongly, in the order Na+ > K+ > Cs+. Structural studies by powder X-ray diffraction (PXRD) suggest that cations in intercage window sites block CH4 adsorption; however, in the presence of CO2, the cations can move enough to permit adsorption (several angstroms). Determination of time-averaged cation positions during CO2 adsorption at 298 K by Rietveld refinement against PXRD data shows that (i) in Na-Rho, there is a small relaxation of Na+ cations within single eight-ring (S8R) sites, (ii) in Cs-Rho, D8R cations move to S8R sites (remaining within windows) and two phases of Cs-Rho (I4̅3m, Im3̅m) are present over a wide pressure range, and (iii) in K-Rho, there is relocation of some K+ cations from window sites to cage sites and two phases coexist, each with I4̅3m symmetry, over the pressure range of 0–1 bar. The final cation distributions at high P CO2 are similar for Na-, K-, and Cs-Rho, and adsorption in each case is only possible by “trapdoor”-type cation gating. Complementary studies on K-chabazite (Si/Al = 3) also show changes in time-averaged cation location during CO2 adsorption.
doi_str_mv 10.1021/cm404028f
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_cm404028f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b546883274</sourcerecordid><originalsourceid>FETCH-LOGICAL-a251t-c197a6cefa55ea8f54e9578d70fcc66a38c93a3e868b07274bb4a25498b0fc9a3</originalsourceid><addsrcrecordid>eNo9UMFOwkAU3BhNRPTgH-zFY3V3u9vdHkkjYEJCgnDx0rxu30JJ6ZK2kHgjfof-HF9iEeJp5k1m3iRDyCNnz5wJ_mI3kkkmjLsiPa4ECxRj4pr0mIl1ILWKbsld06wZ453d9MhXAm3hKzrqoFpSqHI6w9Lbs5rv6pParpCOi-Wq_KTvWKJtiz3S4-F7XsM2974-Hn7oIG98vf1LeUeTqaAdW1TFHkqsWnqpGfp605wMH-jLokU6W_l7cuOgbPDhgn2yGL7Ok3EwmY7eksEkAKF4G1gea4gsOlAKwTglMVba5Jo5a6MIQmPjEEI0kcmYFlpmmeySMu5OZ2MI--Tp_Bdsk679rq66tpSz9DRc-j9c-AsTE2Ol</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cation Gating and Relocation during the Highly Selective “Trapdoor” Adsorption of CO2 on Univalent Cation Forms of Zeolite Rho</title><source>American Chemical Society Journals</source><creator>Lozinska, Magdalena M ; Mowat, John P. S ; Wright, Paul A ; Thompson, Stephen P ; Jorda, Jose L ; Palomino, Miguel ; Valencia, Susana ; Rey, Fernando</creator><creatorcontrib>Lozinska, Magdalena M ; Mowat, John P. S ; Wright, Paul A ; Thompson, Stephen P ; Jorda, Jose L ; Palomino, Miguel ; Valencia, Susana ; Rey, Fernando</creatorcontrib><description>Adsorption of CO2 and CH4 has been measured on the Na-, K-, and Cs-forms of zeolite Rho (0–9 bar; 283–333 K). Although CH4 is excluded, CO2 is readily taken up, although the uptake at low pressures decreases strongly, in the order Na+ &gt; K+ &gt; Cs+. Structural studies by powder X-ray diffraction (PXRD) suggest that cations in intercage window sites block CH4 adsorption; however, in the presence of CO2, the cations can move enough to permit adsorption (several angstroms). Determination of time-averaged cation positions during CO2 adsorption at 298 K by Rietveld refinement against PXRD data shows that (i) in Na-Rho, there is a small relaxation of Na+ cations within single eight-ring (S8R) sites, (ii) in Cs-Rho, D8R cations move to S8R sites (remaining within windows) and two phases of Cs-Rho (I4̅3m, Im3̅m) are present over a wide pressure range, and (iii) in K-Rho, there is relocation of some K+ cations from window sites to cage sites and two phases coexist, each with I4̅3m symmetry, over the pressure range of 0–1 bar. The final cation distributions at high P CO2 are similar for Na-, K-, and Cs-Rho, and adsorption in each case is only possible by “trapdoor”-type cation gating. Complementary studies on K-chabazite (Si/Al = 3) also show changes in time-averaged cation location during CO2 adsorption.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/cm404028f</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Chemistry of materials, 2014-03, Vol.26 (6), p.2052-2061</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cm404028f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cm404028f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,27059,27907,27908,56721,56771</link.rule.ids></links><search><creatorcontrib>Lozinska, Magdalena M</creatorcontrib><creatorcontrib>Mowat, John P. S</creatorcontrib><creatorcontrib>Wright, Paul A</creatorcontrib><creatorcontrib>Thompson, Stephen P</creatorcontrib><creatorcontrib>Jorda, Jose L</creatorcontrib><creatorcontrib>Palomino, Miguel</creatorcontrib><creatorcontrib>Valencia, Susana</creatorcontrib><creatorcontrib>Rey, Fernando</creatorcontrib><title>Cation Gating and Relocation during the Highly Selective “Trapdoor” Adsorption of CO2 on Univalent Cation Forms of Zeolite Rho</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>Adsorption of CO2 and CH4 has been measured on the Na-, K-, and Cs-forms of zeolite Rho (0–9 bar; 283–333 K). Although CH4 is excluded, CO2 is readily taken up, although the uptake at low pressures decreases strongly, in the order Na+ &gt; K+ &gt; Cs+. Structural studies by powder X-ray diffraction (PXRD) suggest that cations in intercage window sites block CH4 adsorption; however, in the presence of CO2, the cations can move enough to permit adsorption (several angstroms). Determination of time-averaged cation positions during CO2 adsorption at 298 K by Rietveld refinement against PXRD data shows that (i) in Na-Rho, there is a small relaxation of Na+ cations within single eight-ring (S8R) sites, (ii) in Cs-Rho, D8R cations move to S8R sites (remaining within windows) and two phases of Cs-Rho (I4̅3m, Im3̅m) are present over a wide pressure range, and (iii) in K-Rho, there is relocation of some K+ cations from window sites to cage sites and two phases coexist, each with I4̅3m symmetry, over the pressure range of 0–1 bar. The final cation distributions at high P CO2 are similar for Na-, K-, and Cs-Rho, and adsorption in each case is only possible by “trapdoor”-type cation gating. Complementary studies on K-chabazite (Si/Al = 3) also show changes in time-averaged cation location during CO2 adsorption.</description><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9UMFOwkAU3BhNRPTgH-zFY3V3u9vdHkkjYEJCgnDx0rxu30JJ6ZK2kHgjfof-HF9iEeJp5k1m3iRDyCNnz5wJ_mI3kkkmjLsiPa4ECxRj4pr0mIl1ILWKbsld06wZ453d9MhXAm3hKzrqoFpSqHI6w9Lbs5rv6pParpCOi-Wq_KTvWKJtiz3S4-F7XsM2974-Hn7oIG98vf1LeUeTqaAdW1TFHkqsWnqpGfp605wMH-jLokU6W_l7cuOgbPDhgn2yGL7Ok3EwmY7eksEkAKF4G1gea4gsOlAKwTglMVba5Jo5a6MIQmPjEEI0kcmYFlpmmeySMu5OZ2MI--Tp_Bdsk679rq66tpSz9DRc-j9c-AsTE2Ol</recordid><startdate>20140325</startdate><enddate>20140325</enddate><creator>Lozinska, Magdalena M</creator><creator>Mowat, John P. S</creator><creator>Wright, Paul A</creator><creator>Thompson, Stephen P</creator><creator>Jorda, Jose L</creator><creator>Palomino, Miguel</creator><creator>Valencia, Susana</creator><creator>Rey, Fernando</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20140325</creationdate><title>Cation Gating and Relocation during the Highly Selective “Trapdoor” Adsorption of CO2 on Univalent Cation Forms of Zeolite Rho</title><author>Lozinska, Magdalena M ; Mowat, John P. S ; Wright, Paul A ; Thompson, Stephen P ; Jorda, Jose L ; Palomino, Miguel ; Valencia, Susana ; Rey, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a251t-c197a6cefa55ea8f54e9578d70fcc66a38c93a3e868b07274bb4a25498b0fc9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lozinska, Magdalena M</creatorcontrib><creatorcontrib>Mowat, John P. S</creatorcontrib><creatorcontrib>Wright, Paul A</creatorcontrib><creatorcontrib>Thompson, Stephen P</creatorcontrib><creatorcontrib>Jorda, Jose L</creatorcontrib><creatorcontrib>Palomino, Miguel</creatorcontrib><creatorcontrib>Valencia, Susana</creatorcontrib><creatorcontrib>Rey, Fernando</creatorcontrib><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lozinska, Magdalena M</au><au>Mowat, John P. S</au><au>Wright, Paul A</au><au>Thompson, Stephen P</au><au>Jorda, Jose L</au><au>Palomino, Miguel</au><au>Valencia, Susana</au><au>Rey, Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cation Gating and Relocation during the Highly Selective “Trapdoor” Adsorption of CO2 on Univalent Cation Forms of Zeolite Rho</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2014-03-25</date><risdate>2014</risdate><volume>26</volume><issue>6</issue><spage>2052</spage><epage>2061</epage><pages>2052-2061</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>Adsorption of CO2 and CH4 has been measured on the Na-, K-, and Cs-forms of zeolite Rho (0–9 bar; 283–333 K). Although CH4 is excluded, CO2 is readily taken up, although the uptake at low pressures decreases strongly, in the order Na+ &gt; K+ &gt; Cs+. Structural studies by powder X-ray diffraction (PXRD) suggest that cations in intercage window sites block CH4 adsorption; however, in the presence of CO2, the cations can move enough to permit adsorption (several angstroms). Determination of time-averaged cation positions during CO2 adsorption at 298 K by Rietveld refinement against PXRD data shows that (i) in Na-Rho, there is a small relaxation of Na+ cations within single eight-ring (S8R) sites, (ii) in Cs-Rho, D8R cations move to S8R sites (remaining within windows) and two phases of Cs-Rho (I4̅3m, Im3̅m) are present over a wide pressure range, and (iii) in K-Rho, there is relocation of some K+ cations from window sites to cage sites and two phases coexist, each with I4̅3m symmetry, over the pressure range of 0–1 bar. The final cation distributions at high P CO2 are similar for Na-, K-, and Cs-Rho, and adsorption in each case is only possible by “trapdoor”-type cation gating. Complementary studies on K-chabazite (Si/Al = 3) also show changes in time-averaged cation location during CO2 adsorption.</abstract><pub>American Chemical Society</pub><doi>10.1021/cm404028f</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2014-03, Vol.26 (6), p.2052-2061
issn 0897-4756
1520-5002
language eng
recordid cdi_acs_journals_10_1021_cm404028f
source American Chemical Society Journals
title Cation Gating and Relocation during the Highly Selective “Trapdoor” Adsorption of CO2 on Univalent Cation Forms of Zeolite Rho
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A24%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cation%20Gating%20and%20Relocation%20during%20the%20Highly%20Selective%20%E2%80%9CTrapdoor%E2%80%9D%20Adsorption%20of%20CO2%20on%20Univalent%20Cation%20Forms%20of%20Zeolite%20Rho&rft.jtitle=Chemistry%20of%20materials&rft.au=Lozinska,%20Magdalena%20M&rft.date=2014-03-25&rft.volume=26&rft.issue=6&rft.spage=2052&rft.epage=2061&rft.pages=2052-2061&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/cm404028f&rft_dat=%3Cacs%3Eb546883274%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true