Cation Gating and Relocation during the Highly Selective “Trapdoor” Adsorption of CO2 on Univalent Cation Forms of Zeolite Rho

Adsorption of CO2 and CH4 has been measured on the Na-, K-, and Cs-forms of zeolite Rho (0–9 bar; 283–333 K). Although CH4 is excluded, CO2 is readily taken up, although the uptake at low pressures decreases strongly, in the order Na+ > K+ > Cs+. Structural studies by powder X-ray diffraction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2014-03, Vol.26 (6), p.2052-2061
Hauptverfasser: Lozinska, Magdalena M, Mowat, John P. S, Wright, Paul A, Thompson, Stephen P, Jorda, Jose L, Palomino, Miguel, Valencia, Susana, Rey, Fernando
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adsorption of CO2 and CH4 has been measured on the Na-, K-, and Cs-forms of zeolite Rho (0–9 bar; 283–333 K). Although CH4 is excluded, CO2 is readily taken up, although the uptake at low pressures decreases strongly, in the order Na+ > K+ > Cs+. Structural studies by powder X-ray diffraction (PXRD) suggest that cations in intercage window sites block CH4 adsorption; however, in the presence of CO2, the cations can move enough to permit adsorption (several angstroms). Determination of time-averaged cation positions during CO2 adsorption at 298 K by Rietveld refinement against PXRD data shows that (i) in Na-Rho, there is a small relaxation of Na+ cations within single eight-ring (S8R) sites, (ii) in Cs-Rho, D8R cations move to S8R sites (remaining within windows) and two phases of Cs-Rho (I4̅3m, Im3̅m) are present over a wide pressure range, and (iii) in K-Rho, there is relocation of some K+ cations from window sites to cage sites and two phases coexist, each with I4̅3m symmetry, over the pressure range of 0–1 bar. The final cation distributions at high P CO2 are similar for Na-, K-, and Cs-Rho, and adsorption in each case is only possible by “trapdoor”-type cation gating. Complementary studies on K-chabazite (Si/Al = 3) also show changes in time-averaged cation location during CO2 adsorption.
ISSN:0897-4756
1520-5002
DOI:10.1021/cm404028f