Intrinsic Compositional Inhomogeneities in Bulk Ti-Doped BiFeO3: Microstructure Development and Multiferroic Properties

Ti-doped BiFeO3 ceramics prepared by a mixed-oxide route were structurally characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM), giving evidence of the formation of an inner structure at the nanometr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2013-05, Vol.25 (9), p.1533-1541
Hauptverfasser: Bernardo, M. S, Jardiel, T, Peiteado, M, Mompean, F. J, Garcia-Hernandez, M, Garcia, M. A, Villegas, M, Caballero, A. C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ti-doped BiFeO3 ceramics prepared by a mixed-oxide route were structurally characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM), giving evidence of the formation of an inner structure at the nanometric scale. The observed nanograins are separated by Ti-rich areas that originate due to the tendency of the titanium dopant to segregate from the perovskite lattice. Such a peculiar nanostructure is responsible for the changes produced in both the electrical and the magnetic properties of BiFeO3 upon titanium doping: the Ti-rich interfaces act as resistive layers that increase the direct-current (dc) resistivity of the material, while the existence of structural domains in the scale of tens of nanometers causes a ferrimagnetic-like behavior with a huge coercive field (on the order of 20 kOe), even at room temperature.
ISSN:0897-4756
1520-5002
DOI:10.1021/cm303743h