Modular Unfolding and Dissociation of the Human Respiratory Syncytial Virus Phosphoprotein P and Its Interaction with the M2–1 Antiterminator: A Singular Tetramer–Tetramer Interface Arrangement
Paramyxoviruses share the essential RNA polymerase complex components, namely, the polymerase (L), phosphoprotein (P), and nucleoprotein (N). Human respiratory syncytial virus (RSV) P is the smallest polypeptide among the family, sharing a coiled coil tetramerization domain, which disruption renders...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2012-10, Vol.51 (41), p.8100-8110 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Paramyxoviruses share the essential RNA polymerase complex components, namely, the polymerase (L), phosphoprotein (P), and nucleoprotein (N). Human respiratory syncytial virus (RSV) P is the smallest polypeptide among the family, sharing a coiled coil tetramerization domain, which disruption renders the virus inactive. We show that unfolding of P displays a first transition with low cooperativity but substantial loss of α-helix content and accessibility to hydrophobic sites, indicative of loose chain packing and fluctuating tertiary structure, typical of molten globules. The lack of unfolding baseline indicates a native state in conformational exchange and metastable at 20 °C. The second transition starts from a true intermediate state, with only the tetramerization domain remaining folded. The tetramerization domain undergoes a two-state dissociation/unfolding reaction (37.3 kcal mol–1). The M2–1 transcription antiterminator, unique to RSV and Metapneumovirus, forms a nonglobular P:M2–1 complex with a 1:1 stoichiometry and a K D of 8.1 nM determined by fluorescence anisotropy, far from the strikingly coincident dissociation range of P and M2–1 tetramers (10–28 M3). The M2–1 binding region has been previously mapped to the N-terminal module of P, strongly suggesting the latter as the metastable molten globule domain. Folding, oligomerization, and assembly events between proteins and with RNA are coupled in the RNA polymerase complex. Quantitative assessment of the hierarchy of these interactions and their mechanisms contribute to the general understanding of RNA replication and transcription in Paramyxoviruses. In particular, the unique P–M2–1 interface present in RSV provides a valuable antiviral target for this worldwide spread human pathogen. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi300765c |