Two-Dimensional Molybdenum Disulfide as a Superb Adsorbent for Removing Hg2+ from Water

One feature of two-dimensional (2D) molybdenum disulfide nanosheets is the huge sulfur-rich surface area, which might lead to the strong adsorption of Hg2+ in water, because the sulfur on the surfaces could strongly bind to Hg2+. In this work, the adsorption of Hg2+ on 2D molybdenum disulfide sheets...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2017-08, Vol.5 (8), p.7410-7419
Hauptverfasser: Jia, Feifei, Wang, Qingmiao, Wu, Jishan, Li, Yanmei, Song, Shaoxian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One feature of two-dimensional (2D) molybdenum disulfide nanosheets is the huge sulfur-rich surface area, which might lead to the strong adsorption of Hg2+ in water, because the sulfur on the surfaces could strongly bind to Hg2+. In this work, the adsorption of Hg2+ on 2D molybdenum disulfide sheets in water has been studied in order to develop a novel and efficient adsorbent for removing Hg2+ from water. The study was performed through the measurements of adsorption isotherm and kinetics, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy–energy-dispersive spectroscopy (SEM-EDS). The partially oxidized 2D molybdenum disulfide sheets with less than five S–Mo–S layers were prepared through the exfoliation of natural molybdenite. AFM observations illustrated a fast and multilayer Hg2+ adsorption on the surface of 2D molybdenum disulfide. The results of adsorption tests and SEM-EDS have indicated that 2D molybdenum disulfide was a superb adsorbent. The adsorption followed the Freundlich isotherm model and fitted well with pseudo-second-order kinetics model. The excellent Hg2+ capture property was mainly attributed to the complexation of Hg2+ with intrinsic S and oxidation-induced O atom exposed on 2D molybdenum disulfide surfaces, as well as the electrostatic interaction between negatively charged 2D molybdenum disulfide and cation Hg2+.
ISSN:2168-0485
2168-0485
DOI:10.1021/acssuschemeng.7b01880