Unveiling the Synchronized Effect of Bulk and Surface Dual Modification of In Situ Nb-Doping and Microwave-Assisted Co(OH) x Cocatalyst for Boosting Photoelectrochemical Water Splitting of Fe2O3 Photoanodes

Herein, in order to improve the conductivity and slack water oxidation kinetics of the hematite (α-Fe2O3) photoanode, we propose the Nb-doped and Co­(OH) x cocatalyst-deposited α-Fe2O3 thin film photoanode (Nb-HT/Co­(OH) x ) via in situ diluted hydrothermal and microwave-assisted methods. The as-pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2023-04, Vol.11 (15), p.5895-5907
Hauptverfasser: Anushkkaran, Periyasamy, Koh, Tae Sik, Chae, Weon-Sik, Lee, Hyun Hwi, Choi, Sun Hee, Jang, Jum Suk
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Herein, in order to improve the conductivity and slack water oxidation kinetics of the hematite (α-Fe2O3) photoanode, we propose the Nb-doped and Co­(OH) x cocatalyst-deposited α-Fe2O3 thin film photoanode (Nb-HT/Co­(OH) x ) via in situ diluted hydrothermal and microwave-assisted methods. The as-prepared Nb-HT/Co­(OH) x thin-film photoanode exhibited a photocurrent density of 1.78 mA cm–2 at 1.23 V versus a reversible hydrogen electrode (RHE), which is 1.7-fold higher than that of the Bare-Fe2O3 photoanode. The dual effect of Nb-doping and Co­(OH) x deposition markedly improved the PEC performance through enhancing the charge carrier mobility and donor density in hematite, as well as accelerating the interfacial charge transfer kinetics at the electrode/electrolyte interface of the α-Fe2O3 thin film photoanode. The Nb-HT/Co­(OH) x photoanode displayed a high charge separation efficiency of 90% (at 1.23 VRHE) and excellent stability over a 10 h period without any decrease. Detailed electrochemical analyses using electrochemical impedance spectroscopy (EIS), open-circuit potential (OCP), and accumulated charge density techniques disclosed the charge separation and transfer processes. This strategy of bulk and surface modification highlights a new approach to constructing a stable photoanode for sustainable solar energy conversion.
ISSN:2168-0485
2168-0485
DOI:10.1021/acssuschemeng.2c07258