Cell Membrane and V2C MXene-Based Electrochemical Immunosensor with Enhanced Antifouling Capability for Detection of CD44
The inactive adsorption and interference of biomolecules in electrochemical biosensors is a topic of intense interest. Directly utilizing native cell membranes to endow electrochemical surfaces with antifouling and biocompatible features is a promising strategy, rather than attempting to synthetical...
Gespeichert in:
Veröffentlicht in: | ACS sensors 2022-09, Vol.7 (9), p.2701-2709 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The inactive adsorption and interference of biomolecules in electrochemical biosensors is a topic of intense interest. Directly utilizing native cell membranes to endow electrochemical surfaces with antifouling and biocompatible features is a promising strategy, rather than attempting to synthetically replicate complex biological interface properties. In this study, we present a facial and sensitive sandwich-type antifouling immunoassay through platelet membrane/Au nanoparticle/delaminated V2C nanosheet (PM/AuNPs/d-V2C)-modified electrode as the substrate of sensing interface and methylene blue/aminated metal organic framework (MB@NH2-Fe-MOF-Zn) as an electrochemical signal probe. The biosensor perfectly integrates the high conductivity of AuNPs-loaded V2C MXene with the excellent loading property of NH2-Fe-MOF-Zn to improve the electrochemical sensing performance. In addition, the excellent antifouling properties of the homogeneous cell membrane can effectively prevent the non-specific adsorption of model proteins. The obtained antifouling biosensor possesses the capability of ultrasensitive detection of CD44 and CD44-positive cancer cell in complex liquids and exhibits good analytical performance for the analysis of CD44 with a linear range from 0.5 ng/mL to 500 ng/mL. This strategy of developing cell membrane-based biosensing systems with enhanced antifouling capability can be easily expanded to the construction of other complex biosensors, and the advanced biological probes and analytical methods provide a favorable means to accurately quantify biomarkers associated with tumor progression. |
---|---|
ISSN: | 2379-3694 2379-3694 |
DOI: | 10.1021/acssensors.2c01215 |