Oxygen Vacancies Enhanced Ozonation toward Phenol Derivatives Removal over Ov‑Bi2O3

Phenolic molecules are a kind of toxic organic pollutants commonly discharged from industrial effluents. Catalytic ozonation holds great potential in removing phenolic pollutants and further improving the removal efficiency is still the research focus of this field. In this study, defect engineering...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS ES&T water 2022-10, Vol.2 (10), p.1725-1733
Hauptverfasser: Zhai, Guangyao, Liu, Shaozhi, Si, Shenghe, Liu, Yuanyuan, Zhang, Honggang, Mao, Yuyin, Zhang, Minghui, Wang, Zeyan, Cheng, Hefeng, Wang, Peng, Zheng, Zhaoke, Dai, Ying, Huang, Baibiao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phenolic molecules are a kind of toxic organic pollutants commonly discharged from industrial effluents. Catalytic ozonation holds great potential in removing phenolic pollutants and further improving the removal efficiency is still the research focus of this field. In this study, defect engineering was used to construct Bi2O3 with rich oxygen vacancies (denoted as Ov-Bi2O3). Ov-Bi2O3 was found to exhibit efficient activity toward the removal of phenolic derivatives. Combined DFT calculations and experimental results suggest that oxygen vacancies play two important roles: (1) the exposed Bi sites induced by rich oxygen vacancies endow a special bridging O3 adsorption, which is beneficial to improve the kinetics of O3 decomposition; (2) O2 produced during the O3 decomposition process can be reutilized to generate 1O2, which prolongs the utilization efficiency of O3. In addition, Ov-Bi2O3 was loaded onto carbon fiber, which also demonstrates efficient activity. This work provides an alternative way to design efficient catalysts toward removal of phenolic pollutants via ozone oxidation.
ISSN:2690-0637
2690-0637
DOI:10.1021/acsestwater.2c00226