Overcoming the Deactivation of Pt/CNT by Introducing CeO2 for Selective Base-Free Glycerol-to-Glyceric Acid Oxidation

Catalytic base-free oxidation of biomass-derived glycerol represents a promising approach for the value-added utilization of glycerol. However, the commonly used Pt/carbon nanotubes (Pt/CNT) catalysts suffer from the severe deactivation, because of the strong adsorption of glyceric acid (GLYA), resu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2020-03, Vol.10 (6), p.3832-3837
Hauptverfasser: Zhang, Xueqiong, Zhou, Dan, Wang, Xiaojing, Zhou, Jian, Li, Jiefei, Zhang, Mingkai, Shen, Yihong, Chu, Haibin, Qu, Yongquan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Catalytic base-free oxidation of biomass-derived glycerol represents a promising approach for the value-added utilization of glycerol. However, the commonly used Pt/carbon nanotubes (Pt/CNT) catalysts suffer from the severe deactivation, because of the strong adsorption of glyceric acid (GLYA), resulting in the serious Pt-surface poisoning and their consequent poor activity with low selectivity toward GLYA. Here, we demonstrate that integrating CeO2 with Pt/CNT could effectively alleviate the catalyst deactivation, delivering high activity and selectivity to produce GLYA. The valence band analysis and kinetic experiments suggest that the Pt-CeO2/CNT ternary interface would weaken the GLYA adsorption on Pt and lower the energy barrier for glycerol oxidation. Moreover, via the generated OH* from H2O dissociation, CeO2 can promote the oxidation of primary hydroxyl groups of glycerol, leading to a high selectivity of GLYA.
ISSN:2155-5435
2155-5435
DOI:10.1021/acscatal.9b05559