Morphology and CO Oxidation Activity of Pd Nanoparticles on SrTiO3 Nanopolyhedra
Single crystal SrTiO3 nanocuboids having primarily TiO2-(001) surfaces and nanododecahedra having primarily (110) surfaces were created by two separate hydrothermal synthesis processes. Pd nanoparticles grown on the two sets of STO nanopolyhedra by atomic layer deposition show different morphologies...
Gespeichert in:
Veröffentlicht in: | ACS catalysis 2018-06, Vol.8 (6), p.4751-4760 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Single crystal SrTiO3 nanocuboids having primarily TiO2-(001) surfaces and nanododecahedra having primarily (110) surfaces were created by two separate hydrothermal synthesis processes. Pd nanoparticles grown on the two sets of STO nanopolyhedra by atomic layer deposition show different morphologies and CO oxidation performance. Transmission electron microscopy and small-angle X-ray scattering show that 2–3 nm Pd nanoparticles with 3–5 nm interparticle distances decorate the STO surfaces. When the number of ALD cycles increases, the growth of the Pd nanoparticles is more significant in size on TiO2-(001)-STO surfaces, while that on (110)-STO surfaces is more predominant in number. High resolution electron microscopy images show that single crystal and multiply twinned Pd nanoparticles coexist on both types of the STO nanopolyhedra and exhibit different degrees of adhesion. The CO oxidation reaction, which was employed to determine the dependence of catalytic activity, showed that the Pd catalytic performance was dominated by the coverage of CO, which is more directly related to Pd nanoparticle size than to shape. CO turnover frequency analysis and diffuse reflectance infrared Fourier transform spectroscopy show that regardless of the shape or degrees of wetting, larger Pd nanoparticles (∼3 nm) have lower catalytic activity due to high CO coverage on nanoparticle facets. Smaller nanoparticles (∼2 nm) have more edge and corner sites and exhibit 2–3 times higher TOF at 80 and 100 °C. |
---|---|
ISSN: | 2155-5435 2155-5435 |
DOI: | 10.1021/acscatal.7b04173 |