Pyrolysis of Metal–Organic Frameworks to Fe3O4@Fe5C2 Core–Shell Nanoparticles for Fischer–Tropsch Synthesis

We prepared highly active catalysts for Fischer–Tropsch (FT) synthesis through the pyrolysis of iron-containing metal–organic frameworks (MOFs). The Fe-time yields of the nitrogen-doped catalyst were as high as 720 μmolCO gFe –1 s–1 under the conditions of 300 °C, 2 MPa, and H2/CO = 1, which is a va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2016-06, Vol.6 (6), p.3610-3618
Hauptverfasser: An, Bing, Cheng, Kang, Wang, Cheng, Wang, Ye, Lin, Wenbin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prepared highly active catalysts for Fischer–Tropsch (FT) synthesis through the pyrolysis of iron-containing metal–organic frameworks (MOFs). The Fe-time yields of the nitrogen-doped catalyst were as high as 720 μmolCO gFe –1 s–1 under the conditions of 300 °C, 2 MPa, and H2/CO = 1, which is a value that surpasses that of most FT catalysts reported in the literature. The pyrolysis of the MOFs yielded nanoparticles with a unique iron oxide@iron carbide core–shell structure dispersed on carbon supports. Such a structure is favorable for FT synthesis and has never been reported previously. Our strategy resolved the problem that the strong metal–support interactions that are usually required to stabilize dispersed particles in calcination compromise the catalytic activity, because of the difficulty of reducing metal oxides. Moreover, we found full coverage of carbonates on the particle surfaces, which likely result from decarboxylation of the MOFs and further stabilize the particles before decomposing to CO2, leaving an active surface rich with dangling bonds for catalytic turnover.
ISSN:2155-5435
2155-5435
DOI:10.1021/acscatal.6b00464