Porous ZnV2O4 Nanowire for Stable and High-Rate Lithium-Ion Battery Anodes
Porous ZnV2O4 nanowires (NWs) were successfully prepared by hydrothermal reaction followed by calcination. Despite the porous structure, these porous ZnV2O4 NWs are single crystal with {220} facets and a wire direction along the c-axis. On the basis of an electrochemical test, these porous ZnV2O4 NW...
Gespeichert in:
Veröffentlicht in: | ACS applied nano materials 2019-07, Vol.2 (7), p.4247-4256 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Porous ZnV2O4 nanowires (NWs) were successfully prepared by hydrothermal reaction followed by calcination. Despite the porous structure, these porous ZnV2O4 NWs are single crystal with {220} facets and a wire direction along the c-axis. On the basis of an electrochemical test, these porous ZnV2O4 NWs have better cycling stability and higher specific capacity (i.e., 460 mA h g–1 after 100 cycles and 149 mA h g–1 after 1000 cycles using 1 and 5 A g–1 current densities, respectively) compared to other morphologies (i.e., spherical and coral-like morphologies). As a ternary transition metal oxide, the produced porous ZnV2O4 NWs undergo phase transformation without compromising the resulting capacity. On the other hand, the CV curves at different scan rates indicate a pseudocapacitive electrochemical behavior of the porous ZnV2O4. |
---|---|
ISSN: | 2574-0970 2574-0970 |
DOI: | 10.1021/acsanm.9b00703 |