Significant Enhancement of Photoactivity in Hybrid TiO2/g‑C3N4 Nanorod Catalysts Modified with Cu–Ni-Based Nanostructures

Light-driven processes such as photocatalytic environmental remediation and photoelectrochemical (PEC) water splitting to produce hydrogen under sunlight are key technologies toward energy sustainability. Despite enormous efforts, a suitable photocatalyst fulfilling all the main requirements such as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied nano materials 2018-06, Vol.1 (6), p.2526-2535
Hauptverfasser: Rathi, Anuj K, Kmentová, Hana, Naldoni, Alberto, Goswami, Anandarup, Gawande, Manoj B, Varma, Rajender S, Kment, Štěpán, Zbořil, Radek
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Light-driven processes such as photocatalytic environmental remediation and photoelectrochemical (PEC) water splitting to produce hydrogen under sunlight are key technologies toward energy sustainability. Despite enormous efforts, a suitable photocatalyst fulfilling all the main requirements such as high photoactivity under visible light, chemical stability, environmental friendliness, and low cost has not been found yet. A promising approach to overcome these limitations is to use hybrid nanostructures showing improved activity and physicochemical properties when compared with single components. Herein, we present a novel photocatalytic nanocomposite system based on titania (TiO2): titania nanorod wrapped with Ni­(OH)2 and Cu­(OH)2 composite carbon nitride (CuNi@g-C3N4/TiO2). This carefully tuned photoanode nanostructure shows almost one order of magnitude higher photocurrent density compared to unsensitized TiO2 nanorods for PEC water splitting upon solar-light illumination. The heterostructured g-C3N4 strongly improves visible absorption of light, separation of electrons and holes, and surface catalysis due to the effect of Cu­(OH)2 nanoparticles and Ni­(OH)2 nanosheets, respectively. The improved photoperformance ascribed to the integrative cooperation effect of all the counterparts resulting in a one-dimensional hydrid nanostructured photoanode with improved light absorption, facile charge separation, and efficient surface catalysis toward PEC oxygen evolution.
ISSN:2574-0970
2574-0970
DOI:10.1021/acsanm.8b00078