Investigation of Morphology-Modified Bi2WO6 Nanoparticles with Surface Plasmon Resonance Effect for the Enhanced Photocatalytic Degradation of Organic Dyes: Toxicity Estimation and In Silico Studies

The advanced oxidation process involves photocatalytic degradation, which is a propitious method of treating wastewater. However, to augment the photocatalytic activity of photocatalysts, the surface plasmon resonance (SPR) method is a highly promising candidate. Herein, we prepared bismuth (Bi) and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied nano materials 2024-09, Vol.7 (18), p.21284-21295
Hauptverfasser: Hemkumar, K., Vignesh, G, Anitha, Pius
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The advanced oxidation process involves photocatalytic degradation, which is a propitious method of treating wastewater. However, to augment the photocatalytic activity of photocatalysts, the surface plasmon resonance (SPR) method is a highly promising candidate. Herein, we prepared bismuth (Bi) and tungsten (W)-based metal oxide (Bi2WO6) coupled with Ag as a semiconducting metal oxide-based plasmon resonance photocatalyst. Despite the SPR effect, the aggregation of particles lowers the efficiency of degradation. To get the better of it, morphology tuning agents and visible light-absorbing agents like CTAB (cetyltrimethylammonium bromide) were used. The prepared composite materials were characterized using sophisticated analytical instruments. The prepared materials were tested for their catalytic activity against Victoria Blue (VB) and Auramine O (AO) dyes. The composite material showed superior catalytic activity over the individual material, 97% and 98% for VB and AO, respectively. In addition, the toxicity of the byproducts (mutagenic toxicity, lethal concentration 50 (LC-50), and lethal dose (LD-50)) was estimated, and the detailed DFT interpretations were studied. Finally, a real-time agricultural application using post-treated water was conducted at the Epipremnum aureum plant.
ISSN:2574-0970
2574-0970
DOI:10.1021/acsanm.4c02238