Regulating Photocurrent Polarity Reversal Point in α‑Ga2O3 Nanorod Arrays for Combinational Logic Circuit Applications

To enhance computing power, a broader understanding of semiconductors is imperative. Conventional semiconductor technology has reached its limits, necessitating the exploration and development of optoelectronic approaches. Among these, the photoelectrochemical (PEC) detector has emerged as a fresh p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied nano materials 2024-01, Vol.7 (2), p.2359-2369
Hauptverfasser: Xu, Hangjie, Deng, Lipeng, Cheng, Yuexing, Wu, Chao, Chen, Kai, Guo, Daoyou
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2369
container_issue 2
container_start_page 2359
container_title ACS applied nano materials
container_volume 7
creator Xu, Hangjie
Deng, Lipeng
Cheng, Yuexing
Wu, Chao
Chen, Kai
Guo, Daoyou
description To enhance computing power, a broader understanding of semiconductors is imperative. Conventional semiconductor technology has reached its limits, necessitating the exploration and development of optoelectronic approaches. Among these, the photoelectrochemical (PEC) detector has emerged as a fresh photodetection paradigm. This study rigorously investigates the indispensability of advancing PEC semiconductor logic devices. By judiciously modifying the α-Ga2O3 sponge’s porous nanorod arrays (NRAs), photocurrent attributes are tailored via the dropwise addition of titanium carbide aqueous solution, conferring inherent self-powering characteristics to the device. Concurrently, leveraging two-dimensional titanium carbide as a modifier for gallium oxide empowers control over the polarity reversal point of the photocurrent in the photoelectrochemical photocurrent switching (PEPS) effect. This enhancement amplifies the exploitation of the PEPS effect in semiconductor devices, attributed to Ti3C2T x ’s dual response, both internal and external, under 254 nm deep ultraviolet illumination, thus intensifying carrier generation. Consequently, the interplay of charge transfer between Ti3C2T x and α-Ga2O3 expedites electron injection into the semiconductor, ultimately elevating α-Ga2O3’s surface Fermi level. Moreover, diverse degrees of Ti3C2T x modification afford distinct reactive sites and channels within α-Ga2O3, thereby elevating the reaction probabilities. Subsequent utilization of the PEPS effect yields PEC logic gates XOR and AND gates. Building upon this, a consolidated architecture integrates the combinational logic circuit elementshalf adder and four-input XOR gatestreamlining the circuit’s complexity and enhancing its utility in verification, computation, error detection, encoding, and decoding. Consequently, Ti3C2T x /α-Ga2O3 NRAs present a promising photoanode prospect. Notably, this marks the pioneering construction of logic components, such as a half adder and a four-input XOR gate, within a gallium oxide PEC device.
doi_str_mv 10.1021/acsanm.3c05945
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsanm_3c05945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a101401880</sourcerecordid><originalsourceid>FETCH-LOGICAL-a190t-5f6711d501b013ca884d166b11445f4a36681e71313147ff17612f7aa5fd444e3</originalsourceid><addsrcrecordid>eNpNkM1KAzEUhYMoWGq3rrMWpuZO_jrLMmgVii1F10OaSWrKdFKSGaE7X8FH8UV8CJ_EaLuQuziXczmHy4fQNZAxkBxulY6q3Y2pJrxg_AwNci5ZRgpJzv_tl2gU45YQAgUISsgAHVZm0zeqc-0GL19953Ufgmk7vPSNCq474JV5MyGqJjku-a7FX5_f7x8zlS8oflKtD77G0xDUIWLrAy79bu3a1OjbFJr7jdO4dEH3rsPT_b5x-u8Wr9CFVU00o5MO0cv93XP5kM0Xs8dyOs8UFKTLuBUSoOYE1gSoVpMJq0GINQBj3DJFhZiAkUDTMGktSAG5lUpxWzPGDB2im2NvQlRtfR_SW7ECUv1yq47cqhM3-gNsd2QO</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Regulating Photocurrent Polarity Reversal Point in α‑Ga2O3 Nanorod Arrays for Combinational Logic Circuit Applications</title><source>American Chemical Society Journals</source><creator>Xu, Hangjie ; Deng, Lipeng ; Cheng, Yuexing ; Wu, Chao ; Chen, Kai ; Guo, Daoyou</creator><creatorcontrib>Xu, Hangjie ; Deng, Lipeng ; Cheng, Yuexing ; Wu, Chao ; Chen, Kai ; Guo, Daoyou</creatorcontrib><description>To enhance computing power, a broader understanding of semiconductors is imperative. Conventional semiconductor technology has reached its limits, necessitating the exploration and development of optoelectronic approaches. Among these, the photoelectrochemical (PEC) detector has emerged as a fresh photodetection paradigm. This study rigorously investigates the indispensability of advancing PEC semiconductor logic devices. By judiciously modifying the α-Ga2O3 sponge’s porous nanorod arrays (NRAs), photocurrent attributes are tailored via the dropwise addition of titanium carbide aqueous solution, conferring inherent self-powering characteristics to the device. Concurrently, leveraging two-dimensional titanium carbide as a modifier for gallium oxide empowers control over the polarity reversal point of the photocurrent in the photoelectrochemical photocurrent switching (PEPS) effect. This enhancement amplifies the exploitation of the PEPS effect in semiconductor devices, attributed to Ti3C2T x ’s dual response, both internal and external, under 254 nm deep ultraviolet illumination, thus intensifying carrier generation. Consequently, the interplay of charge transfer between Ti3C2T x and α-Ga2O3 expedites electron injection into the semiconductor, ultimately elevating α-Ga2O3’s surface Fermi level. Moreover, diverse degrees of Ti3C2T x modification afford distinct reactive sites and channels within α-Ga2O3, thereby elevating the reaction probabilities. Subsequent utilization of the PEPS effect yields PEC logic gates XOR and AND gates. Building upon this, a consolidated architecture integrates the combinational logic circuit elementshalf adder and four-input XOR gatestreamlining the circuit’s complexity and enhancing its utility in verification, computation, error detection, encoding, and decoding. Consequently, Ti3C2T x /α-Ga2O3 NRAs present a promising photoanode prospect. Notably, this marks the pioneering construction of logic components, such as a half adder and a four-input XOR gate, within a gallium oxide PEC device.</description><identifier>ISSN: 2574-0970</identifier><identifier>EISSN: 2574-0970</identifier><identifier>DOI: 10.1021/acsanm.3c05945</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied nano materials, 2024-01, Vol.7 (2), p.2359-2369</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2761-8946 ; 0000-0002-6191-1655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsanm.3c05945$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsanm.3c05945$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Xu, Hangjie</creatorcontrib><creatorcontrib>Deng, Lipeng</creatorcontrib><creatorcontrib>Cheng, Yuexing</creatorcontrib><creatorcontrib>Wu, Chao</creatorcontrib><creatorcontrib>Chen, Kai</creatorcontrib><creatorcontrib>Guo, Daoyou</creatorcontrib><title>Regulating Photocurrent Polarity Reversal Point in α‑Ga2O3 Nanorod Arrays for Combinational Logic Circuit Applications</title><title>ACS applied nano materials</title><addtitle>ACS Appl. Nano Mater</addtitle><description>To enhance computing power, a broader understanding of semiconductors is imperative. Conventional semiconductor technology has reached its limits, necessitating the exploration and development of optoelectronic approaches. Among these, the photoelectrochemical (PEC) detector has emerged as a fresh photodetection paradigm. This study rigorously investigates the indispensability of advancing PEC semiconductor logic devices. By judiciously modifying the α-Ga2O3 sponge’s porous nanorod arrays (NRAs), photocurrent attributes are tailored via the dropwise addition of titanium carbide aqueous solution, conferring inherent self-powering characteristics to the device. Concurrently, leveraging two-dimensional titanium carbide as a modifier for gallium oxide empowers control over the polarity reversal point of the photocurrent in the photoelectrochemical photocurrent switching (PEPS) effect. This enhancement amplifies the exploitation of the PEPS effect in semiconductor devices, attributed to Ti3C2T x ’s dual response, both internal and external, under 254 nm deep ultraviolet illumination, thus intensifying carrier generation. Consequently, the interplay of charge transfer between Ti3C2T x and α-Ga2O3 expedites electron injection into the semiconductor, ultimately elevating α-Ga2O3’s surface Fermi level. Moreover, diverse degrees of Ti3C2T x modification afford distinct reactive sites and channels within α-Ga2O3, thereby elevating the reaction probabilities. Subsequent utilization of the PEPS effect yields PEC logic gates XOR and AND gates. Building upon this, a consolidated architecture integrates the combinational logic circuit elementshalf adder and four-input XOR gatestreamlining the circuit’s complexity and enhancing its utility in verification, computation, error detection, encoding, and decoding. Consequently, Ti3C2T x /α-Ga2O3 NRAs present a promising photoanode prospect. Notably, this marks the pioneering construction of logic components, such as a half adder and a four-input XOR gate, within a gallium oxide PEC device.</description><issn>2574-0970</issn><issn>2574-0970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkM1KAzEUhYMoWGq3rrMWpuZO_jrLMmgVii1F10OaSWrKdFKSGaE7X8FH8UV8CJ_EaLuQuziXczmHy4fQNZAxkBxulY6q3Y2pJrxg_AwNci5ZRgpJzv_tl2gU45YQAgUISsgAHVZm0zeqc-0GL19953Ufgmk7vPSNCq474JV5MyGqJjku-a7FX5_f7x8zlS8oflKtD77G0xDUIWLrAy79bu3a1OjbFJr7jdO4dEH3rsPT_b5x-u8Wr9CFVU00o5MO0cv93XP5kM0Xs8dyOs8UFKTLuBUSoOYE1gSoVpMJq0GINQBj3DJFhZiAkUDTMGktSAG5lUpxWzPGDB2im2NvQlRtfR_SW7ECUv1yq47cqhM3-gNsd2QO</recordid><startdate>20240126</startdate><enddate>20240126</enddate><creator>Xu, Hangjie</creator><creator>Deng, Lipeng</creator><creator>Cheng, Yuexing</creator><creator>Wu, Chao</creator><creator>Chen, Kai</creator><creator>Guo, Daoyou</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0003-2761-8946</orcidid><orcidid>https://orcid.org/0000-0002-6191-1655</orcidid></search><sort><creationdate>20240126</creationdate><title>Regulating Photocurrent Polarity Reversal Point in α‑Ga2O3 Nanorod Arrays for Combinational Logic Circuit Applications</title><author>Xu, Hangjie ; Deng, Lipeng ; Cheng, Yuexing ; Wu, Chao ; Chen, Kai ; Guo, Daoyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a190t-5f6711d501b013ca884d166b11445f4a36681e71313147ff17612f7aa5fd444e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Hangjie</creatorcontrib><creatorcontrib>Deng, Lipeng</creatorcontrib><creatorcontrib>Cheng, Yuexing</creatorcontrib><creatorcontrib>Wu, Chao</creatorcontrib><creatorcontrib>Chen, Kai</creatorcontrib><creatorcontrib>Guo, Daoyou</creatorcontrib><jtitle>ACS applied nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Hangjie</au><au>Deng, Lipeng</au><au>Cheng, Yuexing</au><au>Wu, Chao</au><au>Chen, Kai</au><au>Guo, Daoyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulating Photocurrent Polarity Reversal Point in α‑Ga2O3 Nanorod Arrays for Combinational Logic Circuit Applications</atitle><jtitle>ACS applied nano materials</jtitle><addtitle>ACS Appl. Nano Mater</addtitle><date>2024-01-26</date><risdate>2024</risdate><volume>7</volume><issue>2</issue><spage>2359</spage><epage>2369</epage><pages>2359-2369</pages><issn>2574-0970</issn><eissn>2574-0970</eissn><abstract>To enhance computing power, a broader understanding of semiconductors is imperative. Conventional semiconductor technology has reached its limits, necessitating the exploration and development of optoelectronic approaches. Among these, the photoelectrochemical (PEC) detector has emerged as a fresh photodetection paradigm. This study rigorously investigates the indispensability of advancing PEC semiconductor logic devices. By judiciously modifying the α-Ga2O3 sponge’s porous nanorod arrays (NRAs), photocurrent attributes are tailored via the dropwise addition of titanium carbide aqueous solution, conferring inherent self-powering characteristics to the device. Concurrently, leveraging two-dimensional titanium carbide as a modifier for gallium oxide empowers control over the polarity reversal point of the photocurrent in the photoelectrochemical photocurrent switching (PEPS) effect. This enhancement amplifies the exploitation of the PEPS effect in semiconductor devices, attributed to Ti3C2T x ’s dual response, both internal and external, under 254 nm deep ultraviolet illumination, thus intensifying carrier generation. Consequently, the interplay of charge transfer between Ti3C2T x and α-Ga2O3 expedites electron injection into the semiconductor, ultimately elevating α-Ga2O3’s surface Fermi level. Moreover, diverse degrees of Ti3C2T x modification afford distinct reactive sites and channels within α-Ga2O3, thereby elevating the reaction probabilities. Subsequent utilization of the PEPS effect yields PEC logic gates XOR and AND gates. Building upon this, a consolidated architecture integrates the combinational logic circuit elementshalf adder and four-input XOR gatestreamlining the circuit’s complexity and enhancing its utility in verification, computation, error detection, encoding, and decoding. Consequently, Ti3C2T x /α-Ga2O3 NRAs present a promising photoanode prospect. Notably, this marks the pioneering construction of logic components, such as a half adder and a four-input XOR gate, within a gallium oxide PEC device.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsanm.3c05945</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2761-8946</orcidid><orcidid>https://orcid.org/0000-0002-6191-1655</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0970
ispartof ACS applied nano materials, 2024-01, Vol.7 (2), p.2359-2369
issn 2574-0970
2574-0970
language eng
recordid cdi_acs_journals_10_1021_acsanm_3c05945
source American Chemical Society Journals
title Regulating Photocurrent Polarity Reversal Point in α‑Ga2O3 Nanorod Arrays for Combinational Logic Circuit Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A56%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulating%20Photocurrent%20Polarity%20Reversal%20Point%20in%20%CE%B1%E2%80%91Ga2O3%20Nanorod%20Arrays%20for%20Combinational%20Logic%20Circuit%20Applications&rft.jtitle=ACS%20applied%20nano%20materials&rft.au=Xu,%20Hangjie&rft.date=2024-01-26&rft.volume=7&rft.issue=2&rft.spage=2359&rft.epage=2369&rft.pages=2359-2369&rft.issn=2574-0970&rft.eissn=2574-0970&rft_id=info:doi/10.1021/acsanm.3c05945&rft_dat=%3Cacs%3Ea101401880%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true