Regulating Photocurrent Polarity Reversal Point in α‑Ga2O3 Nanorod Arrays for Combinational Logic Circuit Applications

To enhance computing power, a broader understanding of semiconductors is imperative. Conventional semiconductor technology has reached its limits, necessitating the exploration and development of optoelectronic approaches. Among these, the photoelectrochemical (PEC) detector has emerged as a fresh p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied nano materials 2024-01, Vol.7 (2), p.2359-2369
Hauptverfasser: Xu, Hangjie, Deng, Lipeng, Cheng, Yuexing, Wu, Chao, Chen, Kai, Guo, Daoyou
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To enhance computing power, a broader understanding of semiconductors is imperative. Conventional semiconductor technology has reached its limits, necessitating the exploration and development of optoelectronic approaches. Among these, the photoelectrochemical (PEC) detector has emerged as a fresh photodetection paradigm. This study rigorously investigates the indispensability of advancing PEC semiconductor logic devices. By judiciously modifying the α-Ga2O3 sponge’s porous nanorod arrays (NRAs), photocurrent attributes are tailored via the dropwise addition of titanium carbide aqueous solution, conferring inherent self-powering characteristics to the device. Concurrently, leveraging two-dimensional titanium carbide as a modifier for gallium oxide empowers control over the polarity reversal point of the photocurrent in the photoelectrochemical photocurrent switching (PEPS) effect. This enhancement amplifies the exploitation of the PEPS effect in semiconductor devices, attributed to Ti3C2T x ’s dual response, both internal and external, under 254 nm deep ultraviolet illumination, thus intensifying carrier generation. Consequently, the interplay of charge transfer between Ti3C2T x and α-Ga2O3 expedites electron injection into the semiconductor, ultimately elevating α-Ga2O3’s surface Fermi level. Moreover, diverse degrees of Ti3C2T x modification afford distinct reactive sites and channels within α-Ga2O3, thereby elevating the reaction probabilities. Subsequent utilization of the PEPS effect yields PEC logic gates XOR and AND gates. Building upon this, a consolidated architecture integrates the combinational logic circuit elementshalf adder and four-input XOR gatestreamlining the circuit’s complexity and enhancing its utility in verification, computation, error detection, encoding, and decoding. Consequently, Ti3C2T x /α-Ga2O3 NRAs present a promising photoanode prospect. Notably, this marks the pioneering construction of logic components, such as a half adder and a four-input XOR gate, within a gallium oxide PEC device.
ISSN:2574-0970
2574-0970
DOI:10.1021/acsanm.3c05945