Hierarchical Structures Formed in an Atmospheric Pressure Plasma Jet by Polymerization from an Aerosol of Oxalic Acid Stabilized WO3–x Nanosheet Colloids: Toward High-Performance Electrochemical Devices and Sensors

The development of microstructures which combine high total surface area and high porosity is crucial for technologies such as electrocatalysis, electrochromics, and sensors. High deposition rate, composition control of deposition, and low processing temperature to retain active compositions are als...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied nano materials 2023-04, Vol.6 (7), p.5613-5622
Hauptverfasser: Deas, Robert, Lolohea, Taniela, Chan, Andrew, Waterhouse, Geoffrey I. N., Henshaw, Geoff, McGillivray, Duncan J., Williams, David E.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of microstructures which combine high total surface area and high porosity is crucial for technologies such as electrocatalysis, electrochromics, and sensors. High deposition rate, composition control of deposition, and low processing temperature to retain active compositions are also desirable. To this end, this study describes combining colloidal sol chemistry with a nonthermal atmospheric pressure dielectric barrier discharge plasma jet to print hybrid inorganic/organic tungsten trioxide/oxalic acid (WO3–x /OA) microspheres. Injection of an aerosol of oxalic acid stabilized colloidal tungstic acid into an atmospheric pressure plasma jet results in the deposition of spherical structures in which the colloid is trapped within a plasma-polymerized organic shell. Subsequent low-temperature sintering produces hierarchical spherical shell-like structures comprising tungsten oxide nanosheets. Alteration of the gas flow rate changes the composition of the deposited material. The method has promise for the general preparation from colloidal precursors of porous materials of controlled morphology and composition with hierarchical microstructures, such as are required for applications in electrochemical devices and sensors which need a high ratio of surface area to volume and connectivity throughout the structure, yet also need a microstructure which is open for rapid exchange of reactants.
ISSN:2574-0970
2574-0970
DOI:10.1021/acsanm.3c00066