Efficient and Fast All-Optical Modulator with In Situ Grown MoTe2 Nanosheets on Silicon
All-optical modulators play a key role in building all-optical networks for efficient optical signal processing and have attracted intensive attention. In this paper, all-optical modulators with in situ grown molybdenum telluride (MoTe2) nanosheets on silicon are proposed and demonstrated for the fi...
Gespeichert in:
Veröffentlicht in: | ACS applied nano materials 2023-01, Vol.6 (2), p.838-845 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | All-optical modulators play a key role in building all-optical networks for efficient optical signal processing and have attracted intensive attention. In this paper, all-optical modulators with in situ grown molybdenum telluride (MoTe2) nanosheets on silicon are proposed and demonstrated for the first time with a self-developed complementary-metal-oxide-semiconductor (CMOS)-compatible fabrication processes. For the silicon-based all-optical modulators with a MoTe2-integrated microring resonator and microdisk resonator, the modulation is as efficient as 17.76 and 158.48 pm/mW while the rise/fall time is 3.7/3.6 and 1.5/3.3 μs, respectively. This is the highest tuning efficiency and the fastest response speed among all-optical silicon modulators based on the photothermal effect of two-dimensional materials under the out-of-plane pumping configuration. Furthermore, the manufacturing processes of the present devices are developed from in situ grown MoTe2 nanosheets on a silicon-on-insulator platform, which is CMOS-compatible, stable, and suitable for large-scale photonic integration. |
---|---|
ISSN: | 2574-0970 2574-0970 |
DOI: | 10.1021/acsanm.2c03393 |