Lead-Free Perovskite Cs2Ag x Na1–x Bi y In1–y Cl6 Microcrystals for Scattering–Fluorescent Luminescent Solar Concentrators
In recent years, luminescent solar concentrators (LSCs) have gained a renaissance as a pivotal transparent photovoltaic (PV) for building-integrated photovoltaics (BIPVs). However, most of the studies focused on light-selective LSCs, and less attention was paid to the utilization of the full solar s...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2025-01, Vol.17 (1), p.1644-1653 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent years, luminescent solar concentrators (LSCs) have gained a renaissance as a pivotal transparent photovoltaic (PV) for building-integrated photovoltaics (BIPVs). However, most of the studies focused on light-selective LSCs, and less attention was paid to the utilization of the full solar spectrum. In this study, a lead-free microcrystal Cs2Ag x Na1–x Bi y In1–y Cl6 (CANBIC) perovskite phosphor is demonstrated to have bifunctional effects of luminescent down-shifting (LDS) and light scattering for the fabrication of LSCs, realizing light response from ultraviolet (UV) to NIR regions by an edge-mounted Si solar cell. The optimized CANBIC content (30 mg) in an LSC realizes the best optical efficiency (ηopt) of 5.40% and an average visible transmission (AVT) of >50%. This contributes to the improvement in short circuit current density (J SC) up to 1.232 mA/cm2 for the LSC–PV system (one-edge mounted Si solar cell) as a result of the best power conversion efficiencies (PCEs) of 0.463% and 1.852% for the LSC–PV and LSC–4PV systems (four-edge mounted Si solar cells), respectively. An Al foil is applied as a reflection background in the LSC–4PV system, and a champion PCE of 3.14% is realized due to an improved J SC of up to 7.94 mA/cm2 in total. Furthermore, the LSC maintains superior stability under exposure to continuous ultraviolet illumination or in ambient air. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.4c18315 |