Full Potential Catalysis of Co0.4Ni1.6P–V/CNT with Phosphorus Vacancies for Li2S1–2 Deposition/Decomposition and S8/Li2S n (3 ≤ n ≤ 8) Conversion in Li–S Batteries
The slow kinetics of polysulfide conversions hinders the commercial progress of Li–S batteries. The introduction of high-efficiency catalysts accelerates heterogeneous reactions and enhances the utilization of S. The full potential of the Co0.4Ni1.6P–V/CNT-modified separator catalyzes the all-proces...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2023-10, Vol.15 (42), p.49170-49180 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The slow kinetics of polysulfide conversions hinders the commercial progress of Li–S batteries. The introduction of high-efficiency catalysts accelerates heterogeneous reactions and enhances the utilization of S. The full potential of the Co0.4Ni1.6P–V/CNT-modified separator catalyzes the all-process reactions of the S electrode and increases the rates and cycling lives of the batteries. The two-site synergistic effect of Co0.4Ni1.6P–V/CNT regulates the catalytic activity, and the phosphorus vacancies enrich the active sites. The higher electron density at the Co and Ni double sites increases chemisorption of the Co0.4Ni1.6P–V/CNT on Li2S n (1 ≤ n ≤ 4), stretches and breaks the Li–S and Ni–S bonds during Li2S decomposition, and reduces the energy barrier for Li2S decomposition. The cyclic voltammograms of the asymmetric batteries demonstrated that Co0.4Ni1.6P–V/CNT also catalyzed the Li2S n ⇌ S8 (3 ≤ n ≤ 8) reaction, realizing the full catalytic potential of the Li–S batteries. Increased Li+ diffusion/migration in the Co0.4Ni1.6P–V/CNT-modified separator ensured fast electrochemical reactions. The excellent catalytic effect of Co0.4Ni1.6P–V/CNT provided smaller polarization and superior rate performance, which led to high discharge specific capacities of 1511.9, 1172.6, 1006.0, 881.0, and 785.7 mA h g–1 at current densities of 0.1, 0.2, 0.5, 1, and 2 mA cm–2 with sulfur loadings of 7.98 mg cm–2, respectively. This approach involving simple crystal modulation and introduction of defects provides a new way to achieve the full catalytic potential of Li–S batteries. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.3c10530 |