Ti3C2T x MXene Polymer Composites for Anticorrosion: An Overview and Perspective

As the most studied two-dimensional (2D) material from the MXene family, Ti3C2T x has constantly gained interest from academia and industry. Ti3C2T x MXene has the highest electrical conductivity (up to 24,000 S cm–1) and one of the highest stiffness values with a Young’s modulus of ∼ 334 GPa among...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-09, Vol.14 (38), p.43749-43758
Hauptverfasser: Amin, Ihsan, Brekel, Hidde van den, Nemani, Kartik, Batyrev, Erdni, de Vooys, Arnoud, van der Weijde, Hans, Anasori, Babak, Shiju, N. Raveendran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As the most studied two-dimensional (2D) material from the MXene family, Ti3C2T x has constantly gained interest from academia and industry. Ti3C2T x MXene has the highest electrical conductivity (up to 24,000 S cm–1) and one of the highest stiffness values with a Young’s modulus of ∼ 334 GPa among water-dispersible conductive 2D materials. The negative surface charge of MXene helps to disperse it well in aqueous and other polar solvents. This solubility across a wide range of solvents, excellent interface interaction, tunable surface functionality, and stability with other organic/polymeric materials combined with the layered structure of Ti3C2T x MXene make it a promising material for anticorrosion coatings. While there are many reviews on Ti3C2T x MXene polymer composites for catalysis, flexible electronics, and energy storage, to our knowledge, no review has been published yet on MXenes’ anticorrosion applications. In this brief report, we summarize the current progress and the development of Ti3C2T x polymer composites for anticorrosion. We also provide an outlook and discussion on possible ways to improve the exploitation of Ti3C2T x polymer composites as anticorrosive materials. Finally, we provide a perspective beyond Ti3C2T x MXene composition for the development of future anticorrosion coatings.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c11953