Multifunctional Ti3C2T x MXene-Based Composite Coatings with Superhydrophobic Anti-icing and Photothermal Deicing Properties

Although advances in industrial products have brought convenience to our lives, severe weather has increased the safety risks to industrial facilities. Considerable efforts have been made to develop high-performance superhydrophobic anti-icing coatings. Nevertheless, designing a functional coating w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-06, Vol.14 (22), p.26077-26087
Hauptverfasser: Zhao, Yushun, Yan, Cheng, Hou, Tianqi, Dou, Hongli, Shen, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although advances in industrial products have brought convenience to our lives, severe weather has increased the safety risks to industrial facilities. Considerable efforts have been made to develop high-performance superhydrophobic anti-icing coatings. Nevertheless, designing a functional coating with both anti-icing properties and self-deicing remains a major challenge. Here, we propose a design strategy to exploit a photothermal superhydrophobic multifunctional coating with excellent anti-icing and deicing properties based on MXene by high-temperature sintering and layer-by-layer coating. Specifically, poly­(tetrafluoroethylene) (PTFE) particles provide low surface energy and binding effects. Room-temperature-vulcanized silicone rubber (RTV) enhances the dispersion of the composite particles and the adhesion of the functional coating to a glass substrate. Furthermore, the functional coatings constructed with MXene exhibit outstanding photothermal effects, imparting excellent superhydrophobicity (CA = 160.18°, SA = 1.8°) and efficient photothermal conversion (equilibrium temperature of 109.3 °C). An anti-icing/deicing test is simulated to confirm their efficient anti-icing/deicing performance in practical applications. Overall, the functional coatings designed in this work can be applied in real industrial facilities.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c07087