A Bioinspired Hydrogel-Elastomer Hybrid Surface for Enhanced Mechanical Properties and Lubrication

Developing surfaces that realize lubrication and durable wear resistance under high pressure has great implications in areas ranging from electromechanical systems to advanced biomedical devices but has proven challenging. Inspired by the zonal and transitional structure of articular cartilage, we f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-10, Vol.13 (42), p.50461-50469
Hauptverfasser: Huang, Yan, Wang, Jing, Yu, Wei-jiang, Yu, Yan, Li, Ren-yun, Gao, Qiang, Ren, Ke-feng, Ji, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Developing surfaces that realize lubrication and durable wear resistance under high pressure has great implications in areas ranging from electromechanical systems to advanced biomedical devices but has proven challenging. Inspired by the zonal and transitional structure of articular cartilage, we fabricate a hydrogel-elastomer hybrid surface, where the hydrogel interpenetrates into the polymer elastomer substrate as a transitional and bonding zone, that exhibits a low coefficient of friction and wear resistance under a high load. First, we entrap benzophenone within the surface of polymer substrates such as polydimethylsiloxane, polyvinylchloride, and polyurethane. The hybrid surface is then achieved through initiating polymerization of the acrylamide monomer on the polymer surface upon ultraviolet irradiation. We observe an interpenetration area of the hydrogel and the polymer substrate. The hybrid surface shows a low coefficient of friction (∼0.05) under a very high load (over 100 atm contact pressure). It conserves the lubrication property over 100,000 cycles under a 10.9 MPa pressure and shows slight wear. This work brings a new perspective on designing surfaces with a lubrication property and wear resistance, showing broad applications.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.1c17345