Mn4+-Substituted Li-Rich Li1.2Mn0.4 3+Mn x 4+Ti0.4–x O2 Materials with High Energy Density

In this work, Li-rich Li1.2Mn0.4 3+Mn x 4+Ti0.4–x O2 (LMM x TO, 0 ≤ x ≤ 0.4) oxides have been studied for the first time. X-ray diffraction (XRD) patterns show a cation-disordered rocksalt structure when x ranges from 0 to 0.2. After Mn4+ substitution, LMM0.2TO delivers a high specific capacity of 3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-09, Vol.12 (36), p.40347-40354
Hauptverfasser: Zheng, Shiyao, Zhou, Ke, Zheng, Feng, Liu, Haodong, Zhong, Guiming, Zuo, Wenhua, Xu, Ningbo, Zhao, Gang, Luo, Mingzeng, Wu, Jue, Zhang, Chunyang, Zhang, Zhongru, Wu, Shunqing, Yang, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, Li-rich Li1.2Mn0.4 3+Mn x 4+Ti0.4–x O2 (LMM x TO, 0 ≤ x ≤ 0.4) oxides have been studied for the first time. X-ray diffraction (XRD) patterns show a cation-disordered rocksalt structure when x ranges from 0 to 0.2. After Mn4+ substitution, LMM0.2TO delivers a high specific capacity of 322 mAh g–1 at room temperature (30 °C, 30 mA g–1) and even 352 mAh g–1 (45 °C, 30 mA g–1) with an energy density of 1041 Wh kg–1. The reason for such a high capacity of LMM0.2TO is ascribed to the increase of both cationic (Mn) and anionic (O) redox after Mn4+ substitution, which is proved by dQ/dV curves, X-ray absorption near edge structure, DFT calculations, and in situ XRD results. In addition, the roles of Mn3+ and Ti4+ in LMM0.2TO are also discussed in detail. A ternary phase diagram is established to comprehend and further optimize the earth-abundant Mn3+–Mn4+–Ti4+ system. This work gives an innovative strategy to improve the energy density, broadening the ideas of designing Li-rich materials with better performance.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.0c11544