Nanostructure Approach Enhancing the Thermoelectric Performance of a p‑Type HMS-CrSi2 Composite Synthesized by the MS–SPS Technique

Significant variations in figure-of-merit (zT) values between n and p-type silicides impede the thermoelectric performance of cost-effective silicide-based thermoelectric power generators (TEGs). We report a significantly enhanced and compatible zT value in a p-type higher manganese silicide (HMS)-C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2022-04, Vol.5 (4), p.4698-4706
Hauptverfasser: Prajapati, Chandrakant, Muthiah, Saravanan, Navaneethan, M, Upadhyay, Naval Kishor, Shyam, Radhey, Dhakate, Sanjay R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Significant variations in figure-of-merit (zT) values between n and p-type silicides impede the thermoelectric performance of cost-effective silicide-based thermoelectric power generators (TEGs). We report a significantly enhanced and compatible zT value in a p-type higher manganese silicide (HMS)-CrSi2 nanocomposite synthesized using a combination of liquid-phase melt-spinning (MS) and solid-phase spark plasma sintering (SPS). The MS–SPS-processed HMS-CrSi2 (80–20 wt %) composite material shows substantially enhanced electrical conductivity and a high power factor value. Also, a remarkable enhancement of the HMS-20 wt % CrSi2 composite materials’ zT ≃ 0.92 is realized due to a concurrent reduction in its thermal conductivity (κ). This 2-fold increase in the zT value compared to pure HMS exhibited by the composite material, consisting of nanoscale dimensional grain features, mainly originates from a rapid solidification melt-spinning process. The composite of HMS-CrSi2 synthesized using the combination of MS and SPS techniques is investigated to realize a high thermoelectric figure-of-merit (zT) value in a p-type thermoelectric material, which is considered a potential compatible counterpart for n-type silicides.
ISSN:2574-0962
2574-0962
DOI:10.1021/acsaem.2c00116