Nanostructured Polyaniline/Graphene/Fe2O3 Composites Hydrogel as a High-Performance Flexible Supercapacitor Electrode Material
In recent years, the demand for high-performance flexible and portable electronics with high power/energy density has increased rapidly. Currently, the flexible devices have seized the interest of researchers in energy storage especially, supercapacitors and batteries. Working on the same line, tern...
Gespeichert in:
Veröffentlicht in: | ACS applied energy materials 2020-07, Vol.3 (7), p.6434-6446 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent years, the demand for high-performance flexible and portable electronics with high power/energy density has increased rapidly. Currently, the flexible devices have seized the interest of researchers in energy storage especially, supercapacitors and batteries. Working on the same line, ternary nanostructured polyaniline/Fe2O3-decorated graphene (PGF) composite hydrogel coated on carbon cloth has been prepared as a potential electrode material for flexible supercapacitor. Different compositions of aniline to Fe2O3-decorated graphene have been synthesized by in situ chemical oxidative polymerization. The ternary composite hydrogel on carbon cloth exhibits a high specific capacitance of 1124 F/g at a current density of 0.25 A/g in 1 M H2SO4. The symmetrical supercapacitor has shown high rate capability (∼82.2% at 7.5 A/g) as well as excellent cycling stability. The excellent electrochemical performance of ternary composites hydrogel have been realized because of the well-designed cross-linked hydrogel structure, high surface area, and synergistic effects among all three constituents. This outstanding performance holds great potential for next-generation flexible supercapacitors. |
---|---|
ISSN: | 2574-0962 2574-0962 |
DOI: | 10.1021/acsaem.0c00684 |