Nitrogen-Doped Graphene-Ti3C2T x Quasi-3D Heterostructures Interfacial Interaction for High-Temperature Vibrational Piezoelectric Energy Harvesting Application
Piezoelectric nanogenerators (PENG) can face challenges when integrated into high-temperature applications because of their high-temperature sensitivity. Heterostructures of specific 2D nanomaterials can potentially enhance the PENG performance for practical applications at high temperatures. Hence,...
Gespeichert in:
Veröffentlicht in: | ACS applied electronic materials 2024-07, Vol.6 (7), p.4948-4962 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Piezoelectric nanogenerators (PENG) can face challenges when integrated into high-temperature applications because of their high-temperature sensitivity. Heterostructures of specific 2D nanomaterials can potentially enhance the PENG performance for practical applications at high temperatures. Hence, this study incorporates nitrogen-doped graphene (NGr) and Ti3C2T x MXene heterostructure nanofillers into the polyvinylidene difluoride (PVDF) matrix for energy harvesting in a high-temperature vibration environment. The reproducible and stable all-solution fabrication is achieved by optimizing the appropriate ratio of the NGr-Ti3C2T x ratio. At room temperature, the nanogenerator showed an optimum output voltage of ∼9.0 V and ∼1.5 μA of current. Thereby, it increased to 24.0 V and 1.75 μA when the temperature increased to 90 °C, obtaining a power density of 3.85 μW/cm2. This outstanding performance is attributed to the designed NGr-Ti3C2T x quasi-3D heterostructure, where its rich interfacial features, excellent electrical conductivity, and localized elastic complexes synergistically promote the piezoelectric output of the energy harvester. Placing the device on the road could be used to collect the mechanical energy generated by the vibration of the car’s movement and convert it into electrical energy, which opens up new development possibilities for addressing emerging energy issues. |
---|---|
ISSN: | 2637-6113 2637-6113 |
DOI: | 10.1021/acsaelm.4c00509 |