Bridging the Gap from Mononuclear PdII Precatalysts to Pd Nanoparticles: Identification of Intermediate Linear [Pd3(XPh3)4]2+ Clusters as Catalytic Species for Suzuki–Miyaura Couplings (X = P, As)
Tripalladium clusters of the type [Pd3(PPh3)4]2+, wherein three linearly connected Pd atoms are stabilized by phosphine and arsine ligands, have been detected and isolated as intermediates during the reduction of well-defined mononuclear [Pd(OTf)2(XPh3)2] (X = P and X = As, respectively) to Pd nano...
Gespeichert in:
Veröffentlicht in: | Organometallics 2021-11, Vol.40 (21), p.3560-3570 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tripalladium clusters of the type [Pd3(PPh3)4]2+, wherein three linearly connected Pd atoms are stabilized by phosphine and arsine ligands, have been detected and isolated as intermediates during the reduction of well-defined mononuclear [Pd(OTf)2(XPh3)2] (X = P and X = As, respectively) to Pd nanoparticles (PdNPs). The isolated [Pd3(PPh3)4]2+ cluster isomerizes on broad-band UV irradiation to form an unexpected photoisomer, produced by a remarkable change in conformation at one of the bridging PPh3 ligands. A catalytic role for these [Pd3(XPh3)4]2+ species is exemplified in Suzuki–Miyaura cross-coupling (SMCC) reactions, with high activity seen in the arylation of a brominated heterocyclic 2-pyrone. Use of the [Pd3(PPh3)4]2+ cluster enables a switch in site selectivity for SMCC reactions involving 2,4-dibromopyridine from the typical C2-bromide site (seen previously for mononuclear Pd catalysts) to the atypical C4-bromide site, thereby mirroring recently reported cyclic Pd3 clusters and PdNPs. We have further determined that the thermal isomer and photoisomer of [Pd3(PPh3)4]2+ are similarly catalytically active in the Pd-catalyzed hydrogenation of phenylacetylene to give styrene. Our findings link the evolution of mononuclear Pd(II) salts to PdNPs via the intermediacy of linear [Pd3(XPh3)4]2+ clusters. |
---|---|
ISSN: | 0276-7333 1520-6041 |
DOI: | 10.1021/acs.organomet.1c00452 |