Pathogen Receptor Membrane-Coating Facet Structures Boost Nanomaterial Immune Escape and Antibacterial Performance
Nanomaterials show great potential for the treatment of bacterial infections, but their effects remain limited by low antibacterial efficiency and immune clearance. Facet-dependent nanozymes coated with pathogen receptor membranes were fabricated, providing an approach for producing superphototherma...
Gespeichert in:
Veröffentlicht in: | Nano letters 2021-12, Vol.21 (23), p.9966-9975 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nanomaterials show great potential for the treatment of bacterial infections, but their effects remain limited by low antibacterial efficiency and immune clearance. Facet-dependent nanozymes coated with pathogen receptor membranes were fabricated, providing an approach for producing superphotothermal antibacterial nanomaterials with high biocompatibility and low immune clearance. (100)- and (112)-Faceted CuFeSe2 presented excellent photothermal conversion efficiency (46%). However, the peroxidase-like activity of (100)-faceted CuFeSe2 enhanced the decomposition of H2O2 to hydroxyl radicals (•OH) and was markedly greater than that of (112)-faceted CuFeSe2, with nearly 100% of Staphylococcus aureus being killed under near-infrared (NIR) irradiation. Importantly, bacteria-pretreated immune membranes (i.e., pathogen receptor membranes) coated with CuFeSe2 exhibited superior S. aureus-binding ability, presented obvious immune-evading capability, and resulted in targeted delivery to infected sites. As a proof-of-principle demonstration, these findings hold promise for the use of pathogen receptor membrane-coated facet-dependent nanomaterials in clinical applications and the treatment of bacterial infections. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.1c03427 |