Direct Optical Lithography of CsPbX3 Nanocrystals via Photoinduced Ligand Cleavage with Postpatterning Chemical Modification and Electronic Coupling
Microscale patterning of solution-processed nanomaterials is important for integration in functional devices. Colloidal lead halide perovskite (LHP) nanocrystals (NCs) can be particularly challenging to pattern due to their incompatibility with polar solvents and lability of surface ligands. Here, w...
Gespeichert in:
Veröffentlicht in: | Nano letters 2021-09, Vol.21 (18), p.7609-7616 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microscale patterning of solution-processed nanomaterials is important for integration in functional devices. Colloidal lead halide perovskite (LHP) nanocrystals (NCs) can be particularly challenging to pattern due to their incompatibility with polar solvents and lability of surface ligands. Here, we introduce a direct photopatterning approach for LHP NCs through the binding and subsequent cleavage of a photosensitive oxime sulfonate ester (−CN–OSOO−). The photosensitizer binds to the NCs through its sulfonate group and is cleaved at the N–O bond during photoirradiation with 405 nm light. This bond cleavage decreases the solubility of the NCs, which allows patterns to emerge upon development with toluene. Postpatterning ligand exchange results in photoluminescence quantum yields of up to 79%, while anion exchange provides tunability in the emission wavelength. The patterned NC films show photoconductive behavior, demonstrating that good electrical contact between the NCs can be established. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.1c02249 |