Highly Strained Au Nanoparticles for Improved Electrocatalysis of Ethanol Oxidation Reaction

Au is an ideal noble metal for use as an electrocatalyst for the ethanol oxidation reaction owing to its high performance-to-cost ratio. The catalyst usually exists as nanoparticles (NPs) for high surface area-to-volume ratio. In the present work, a nontraditional physical approach has been develope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2020-04, Vol.11 (8), p.3005-3013
Hauptverfasser: Cao, Xun, Li, Chaojiang, Peng, Dongdong, Lu, Yu, Huang, Kang, Wu, Junsheng, Zhao, Chunwang, Huang, Yizhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3013
container_issue 8
container_start_page 3005
container_title The journal of physical chemistry letters
container_volume 11
creator Cao, Xun
Li, Chaojiang
Peng, Dongdong
Lu, Yu
Huang, Kang
Wu, Junsheng
Zhao, Chunwang
Huang, Yizhong
description Au is an ideal noble metal for use as an electrocatalyst for the ethanol oxidation reaction owing to its high performance-to-cost ratio. The catalyst usually exists as nanoparticles (NPs) for high surface area-to-volume ratio. In the present work, a nontraditional physical approach has been developed to fabricate ultrasmall and homogeneous single-crystalline Au NPs by ion bombardment in a precision ion polishing system. Transmission electron microscopy characterizations show that the Au NPs produced with 5 keV Ar+ are highly strained to form twinned crystals, which accumulate a large amount of surface energy, and this was found to be an underlying reason causing strong catalysis. Electrochemistry tests reveal that in alkaline medium the C1 pathway occurs much more preferentially with the strained Au NPs than the normal Au NPs. The surface area-to-volume ratio is no longer the only factor that affects the performance; instead, surface energy might play a more important role in enhancing the catalytic activities.
doi_str_mv 10.1021/acs.jpclett.9b03623
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpclett_9b03623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371141142</sourcerecordid><originalsourceid>FETCH-LOGICAL-a411t-c47ce9065dd3306f47f7cfad14522999ed56051c8b61483b46afb87b0e7520a03</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMofkx_gSC5FGTzJGmT9lLGdIIo-HEnlDRNNNI1M0nV_XszN8Ur8SoH8rznvDwIHRIYEaDkVKowepmrVsc4KmtgnLINtEvKrBgKUuSbv-YdtBfCCwAvoRDbaIdRQktOxS56nNqn53aB76KXttMNPuvxtezcXPpo0-6AjfP4cjb37i39TlqtondKRtkugg3YGTyJzynQ4psP28hoXYdvtVTLYR9tGdkGfbB-B-jhfHI_ng6vbi4ux2dXQ5kREocqE0qXwPOmYQy4yYQRysiGZDmlZVnqJueQE1XUnGQFqzMuTV2IGrTIKUhgA3S82ptavvY6xGpmg9JtKzvt-lBRJghJpzKaULZClXcheG2qubcz6RcVgWqptUpaq7XWaq01pY7WB_p6ppufzLfHBBQr4F3XzgRldaf0DwYAOeUsZ2kARsc2fnkau76LKXry_2iiT1f0V03X-y6J_bP7J68hp7o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371141142</pqid></control><display><type>article</type><title>Highly Strained Au Nanoparticles for Improved Electrocatalysis of Ethanol Oxidation Reaction</title><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Cao, Xun ; Li, Chaojiang ; Peng, Dongdong ; Lu, Yu ; Huang, Kang ; Wu, Junsheng ; Zhao, Chunwang ; Huang, Yizhong</creator><creatorcontrib>Cao, Xun ; Li, Chaojiang ; Peng, Dongdong ; Lu, Yu ; Huang, Kang ; Wu, Junsheng ; Zhao, Chunwang ; Huang, Yizhong</creatorcontrib><description>Au is an ideal noble metal for use as an electrocatalyst for the ethanol oxidation reaction owing to its high performance-to-cost ratio. The catalyst usually exists as nanoparticles (NPs) for high surface area-to-volume ratio. In the present work, a nontraditional physical approach has been developed to fabricate ultrasmall and homogeneous single-crystalline Au NPs by ion bombardment in a precision ion polishing system. Transmission electron microscopy characterizations show that the Au NPs produced with 5 keV Ar+ are highly strained to form twinned crystals, which accumulate a large amount of surface energy, and this was found to be an underlying reason causing strong catalysis. Electrochemistry tests reveal that in alkaline medium the C1 pathway occurs much more preferentially with the strained Au NPs than the normal Au NPs. The surface area-to-volume ratio is no longer the only factor that affects the performance; instead, surface energy might play a more important role in enhancing the catalytic activities.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.9b03623</identifier><identifier>PMID: 32129627</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Chemistry ; Chemistry, Physical ; Materials Science ; Materials Science, Multidisciplinary ; Nanoscience &amp; Nanotechnology ; Physical Sciences ; Physics ; Physics, Atomic, Molecular &amp; Chemical ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Technology</subject><ispartof>The journal of physical chemistry letters, 2020-04, Vol.11 (8), p.3005-3013</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>16</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000526353000032</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a411t-c47ce9065dd3306f47f7cfad14522999ed56051c8b61483b46afb87b0e7520a03</citedby><cites>FETCH-LOGICAL-a411t-c47ce9065dd3306f47f7cfad14522999ed56051c8b61483b46afb87b0e7520a03</cites><orcidid>0000-0002-6034-381X ; 0000-0002-0135-6792 ; 0000-0003-2644-856X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.9b03623$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.9b03623$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,28253,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32129627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Xun</creatorcontrib><creatorcontrib>Li, Chaojiang</creatorcontrib><creatorcontrib>Peng, Dongdong</creatorcontrib><creatorcontrib>Lu, Yu</creatorcontrib><creatorcontrib>Huang, Kang</creatorcontrib><creatorcontrib>Wu, Junsheng</creatorcontrib><creatorcontrib>Zhao, Chunwang</creatorcontrib><creatorcontrib>Huang, Yizhong</creatorcontrib><title>Highly Strained Au Nanoparticles for Improved Electrocatalysis of Ethanol Oxidation Reaction</title><title>The journal of physical chemistry letters</title><addtitle>J PHYS CHEM LETT</addtitle><addtitle>J. Phys. Chem. Lett</addtitle><description>Au is an ideal noble metal for use as an electrocatalyst for the ethanol oxidation reaction owing to its high performance-to-cost ratio. The catalyst usually exists as nanoparticles (NPs) for high surface area-to-volume ratio. In the present work, a nontraditional physical approach has been developed to fabricate ultrasmall and homogeneous single-crystalline Au NPs by ion bombardment in a precision ion polishing system. Transmission electron microscopy characterizations show that the Au NPs produced with 5 keV Ar+ are highly strained to form twinned crystals, which accumulate a large amount of surface energy, and this was found to be an underlying reason causing strong catalysis. Electrochemistry tests reveal that in alkaline medium the C1 pathway occurs much more preferentially with the strained Au NPs than the normal Au NPs. The surface area-to-volume ratio is no longer the only factor that affects the performance; instead, surface energy might play a more important role in enhancing the catalytic activities.</description><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Atomic, Molecular &amp; Chemical</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Technology</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkF1LwzAUhoMofkx_gSC5FGTzJGmT9lLGdIIo-HEnlDRNNNI1M0nV_XszN8Ur8SoH8rznvDwIHRIYEaDkVKowepmrVsc4KmtgnLINtEvKrBgKUuSbv-YdtBfCCwAvoRDbaIdRQktOxS56nNqn53aB76KXttMNPuvxtezcXPpo0-6AjfP4cjb37i39TlqtondKRtkugg3YGTyJzynQ4psP28hoXYdvtVTLYR9tGdkGfbB-B-jhfHI_ng6vbi4ux2dXQ5kREocqE0qXwPOmYQy4yYQRysiGZDmlZVnqJueQE1XUnGQFqzMuTV2IGrTIKUhgA3S82ptavvY6xGpmg9JtKzvt-lBRJghJpzKaULZClXcheG2qubcz6RcVgWqptUpaq7XWaq01pY7WB_p6ppufzLfHBBQr4F3XzgRldaf0DwYAOeUsZ2kARsc2fnkau76LKXry_2iiT1f0V03X-y6J_bP7J68hp7o</recordid><startdate>20200416</startdate><enddate>20200416</enddate><creator>Cao, Xun</creator><creator>Li, Chaojiang</creator><creator>Peng, Dongdong</creator><creator>Lu, Yu</creator><creator>Huang, Kang</creator><creator>Wu, Junsheng</creator><creator>Zhao, Chunwang</creator><creator>Huang, Yizhong</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6034-381X</orcidid><orcidid>https://orcid.org/0000-0002-0135-6792</orcidid><orcidid>https://orcid.org/0000-0003-2644-856X</orcidid></search><sort><creationdate>20200416</creationdate><title>Highly Strained Au Nanoparticles for Improved Electrocatalysis of Ethanol Oxidation Reaction</title><author>Cao, Xun ; Li, Chaojiang ; Peng, Dongdong ; Lu, Yu ; Huang, Kang ; Wu, Junsheng ; Zhao, Chunwang ; Huang, Yizhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a411t-c47ce9065dd3306f47f7cfad14522999ed56051c8b61483b46afb87b0e7520a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Atomic, Molecular &amp; Chemical</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Xun</creatorcontrib><creatorcontrib>Li, Chaojiang</creatorcontrib><creatorcontrib>Peng, Dongdong</creatorcontrib><creatorcontrib>Lu, Yu</creatorcontrib><creatorcontrib>Huang, Kang</creatorcontrib><creatorcontrib>Wu, Junsheng</creatorcontrib><creatorcontrib>Zhao, Chunwang</creatorcontrib><creatorcontrib>Huang, Yizhong</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Xun</au><au>Li, Chaojiang</au><au>Peng, Dongdong</au><au>Lu, Yu</au><au>Huang, Kang</au><au>Wu, Junsheng</au><au>Zhao, Chunwang</au><au>Huang, Yizhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Strained Au Nanoparticles for Improved Electrocatalysis of Ethanol Oxidation Reaction</atitle><jtitle>The journal of physical chemistry letters</jtitle><stitle>J PHYS CHEM LETT</stitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2020-04-16</date><risdate>2020</risdate><volume>11</volume><issue>8</issue><spage>3005</spage><epage>3013</epage><pages>3005-3013</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Au is an ideal noble metal for use as an electrocatalyst for the ethanol oxidation reaction owing to its high performance-to-cost ratio. The catalyst usually exists as nanoparticles (NPs) for high surface area-to-volume ratio. In the present work, a nontraditional physical approach has been developed to fabricate ultrasmall and homogeneous single-crystalline Au NPs by ion bombardment in a precision ion polishing system. Transmission electron microscopy characterizations show that the Au NPs produced with 5 keV Ar+ are highly strained to form twinned crystals, which accumulate a large amount of surface energy, and this was found to be an underlying reason causing strong catalysis. Electrochemistry tests reveal that in alkaline medium the C1 pathway occurs much more preferentially with the strained Au NPs than the normal Au NPs. The surface area-to-volume ratio is no longer the only factor that affects the performance; instead, surface energy might play a more important role in enhancing the catalytic activities.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>32129627</pmid><doi>10.1021/acs.jpclett.9b03623</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6034-381X</orcidid><orcidid>https://orcid.org/0000-0002-0135-6792</orcidid><orcidid>https://orcid.org/0000-0003-2644-856X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2020-04, Vol.11 (8), p.3005-3013
issn 1948-7185
1948-7185
language eng
recordid cdi_acs_journals_10_1021_acs_jpclett_9b03623
source ACS Publications; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Chemistry
Chemistry, Physical
Materials Science
Materials Science, Multidisciplinary
Nanoscience & Nanotechnology
Physical Sciences
Physics
Physics, Atomic, Molecular & Chemical
Science & Technology
Science & Technology - Other Topics
Technology
title Highly Strained Au Nanoparticles for Improved Electrocatalysis of Ethanol Oxidation Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T07%3A36%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Strained%20Au%20Nanoparticles%20for%20Improved%20Electrocatalysis%20of%20Ethanol%20Oxidation%20Reaction&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Cao,%20Xun&rft.date=2020-04-16&rft.volume=11&rft.issue=8&rft.spage=3005&rft.epage=3013&rft.pages=3005-3013&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.9b03623&rft_dat=%3Cproquest_acs_j%3E2371141142%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371141142&rft_id=info:pmid/32129627&rfr_iscdi=true