Highly Strained Au Nanoparticles for Improved Electrocatalysis of Ethanol Oxidation Reaction
Au is an ideal noble metal for use as an electrocatalyst for the ethanol oxidation reaction owing to its high performance-to-cost ratio. The catalyst usually exists as nanoparticles (NPs) for high surface area-to-volume ratio. In the present work, a nontraditional physical approach has been develope...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2020-04, Vol.11 (8), p.3005-3013 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3013 |
---|---|
container_issue | 8 |
container_start_page | 3005 |
container_title | The journal of physical chemistry letters |
container_volume | 11 |
creator | Cao, Xun Li, Chaojiang Peng, Dongdong Lu, Yu Huang, Kang Wu, Junsheng Zhao, Chunwang Huang, Yizhong |
description | Au is an ideal noble metal for use as an electrocatalyst for the ethanol oxidation reaction owing to its high performance-to-cost ratio. The catalyst usually exists as nanoparticles (NPs) for high surface area-to-volume ratio. In the present work, a nontraditional physical approach has been developed to fabricate ultrasmall and homogeneous single-crystalline Au NPs by ion bombardment in a precision ion polishing system. Transmission electron microscopy characterizations show that the Au NPs produced with 5 keV Ar+ are highly strained to form twinned crystals, which accumulate a large amount of surface energy, and this was found to be an underlying reason causing strong catalysis. Electrochemistry tests reveal that in alkaline medium the C1 pathway occurs much more preferentially with the strained Au NPs than the normal Au NPs. The surface area-to-volume ratio is no longer the only factor that affects the performance; instead, surface energy might play a more important role in enhancing the catalytic activities. |
doi_str_mv | 10.1021/acs.jpclett.9b03623 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpclett_9b03623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371141142</sourcerecordid><originalsourceid>FETCH-LOGICAL-a411t-c47ce9065dd3306f47f7cfad14522999ed56051c8b61483b46afb87b0e7520a03</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMofkx_gSC5FGTzJGmT9lLGdIIo-HEnlDRNNNI1M0nV_XszN8Ur8SoH8rznvDwIHRIYEaDkVKowepmrVsc4KmtgnLINtEvKrBgKUuSbv-YdtBfCCwAvoRDbaIdRQktOxS56nNqn53aB76KXttMNPuvxtezcXPpo0-6AjfP4cjb37i39TlqtondKRtkugg3YGTyJzynQ4psP28hoXYdvtVTLYR9tGdkGfbB-B-jhfHI_ng6vbi4ux2dXQ5kREocqE0qXwPOmYQy4yYQRysiGZDmlZVnqJueQE1XUnGQFqzMuTV2IGrTIKUhgA3S82ptavvY6xGpmg9JtKzvt-lBRJghJpzKaULZClXcheG2qubcz6RcVgWqptUpaq7XWaq01pY7WB_p6ppufzLfHBBQr4F3XzgRldaf0DwYAOeUsZ2kARsc2fnkau76LKXry_2iiT1f0V03X-y6J_bP7J68hp7o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2371141142</pqid></control><display><type>article</type><title>Highly Strained Au Nanoparticles for Improved Electrocatalysis of Ethanol Oxidation Reaction</title><source>ACS Publications</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Cao, Xun ; Li, Chaojiang ; Peng, Dongdong ; Lu, Yu ; Huang, Kang ; Wu, Junsheng ; Zhao, Chunwang ; Huang, Yizhong</creator><creatorcontrib>Cao, Xun ; Li, Chaojiang ; Peng, Dongdong ; Lu, Yu ; Huang, Kang ; Wu, Junsheng ; Zhao, Chunwang ; Huang, Yizhong</creatorcontrib><description>Au is an ideal noble metal for use as an electrocatalyst for the ethanol oxidation reaction owing to its high performance-to-cost ratio. The catalyst usually exists as nanoparticles (NPs) for high surface area-to-volume ratio. In the present work, a nontraditional physical approach has been developed to fabricate ultrasmall and homogeneous single-crystalline Au NPs by ion bombardment in a precision ion polishing system. Transmission electron microscopy characterizations show that the Au NPs produced with 5 keV Ar+ are highly strained to form twinned crystals, which accumulate a large amount of surface energy, and this was found to be an underlying reason causing strong catalysis. Electrochemistry tests reveal that in alkaline medium the C1 pathway occurs much more preferentially with the strained Au NPs than the normal Au NPs. The surface area-to-volume ratio is no longer the only factor that affects the performance; instead, surface energy might play a more important role in enhancing the catalytic activities.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.9b03623</identifier><identifier>PMID: 32129627</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Chemistry ; Chemistry, Physical ; Materials Science ; Materials Science, Multidisciplinary ; Nanoscience & Nanotechnology ; Physical Sciences ; Physics ; Physics, Atomic, Molecular & Chemical ; Science & Technology ; Science & Technology - Other Topics ; Technology</subject><ispartof>The journal of physical chemistry letters, 2020-04, Vol.11 (8), p.3005-3013</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>16</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000526353000032</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-a411t-c47ce9065dd3306f47f7cfad14522999ed56051c8b61483b46afb87b0e7520a03</citedby><cites>FETCH-LOGICAL-a411t-c47ce9065dd3306f47f7cfad14522999ed56051c8b61483b46afb87b0e7520a03</cites><orcidid>0000-0002-6034-381X ; 0000-0002-0135-6792 ; 0000-0003-2644-856X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.9b03623$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.9b03623$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,28253,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32129627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Xun</creatorcontrib><creatorcontrib>Li, Chaojiang</creatorcontrib><creatorcontrib>Peng, Dongdong</creatorcontrib><creatorcontrib>Lu, Yu</creatorcontrib><creatorcontrib>Huang, Kang</creatorcontrib><creatorcontrib>Wu, Junsheng</creatorcontrib><creatorcontrib>Zhao, Chunwang</creatorcontrib><creatorcontrib>Huang, Yizhong</creatorcontrib><title>Highly Strained Au Nanoparticles for Improved Electrocatalysis of Ethanol Oxidation Reaction</title><title>The journal of physical chemistry letters</title><addtitle>J PHYS CHEM LETT</addtitle><addtitle>J. Phys. Chem. Lett</addtitle><description>Au is an ideal noble metal for use as an electrocatalyst for the ethanol oxidation reaction owing to its high performance-to-cost ratio. The catalyst usually exists as nanoparticles (NPs) for high surface area-to-volume ratio. In the present work, a nontraditional physical approach has been developed to fabricate ultrasmall and homogeneous single-crystalline Au NPs by ion bombardment in a precision ion polishing system. Transmission electron microscopy characterizations show that the Au NPs produced with 5 keV Ar+ are highly strained to form twinned crystals, which accumulate a large amount of surface energy, and this was found to be an underlying reason causing strong catalysis. Electrochemistry tests reveal that in alkaline medium the C1 pathway occurs much more preferentially with the strained Au NPs than the normal Au NPs. The surface area-to-volume ratio is no longer the only factor that affects the performance; instead, surface energy might play a more important role in enhancing the catalytic activities.</description><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience & Nanotechnology</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Atomic, Molecular & Chemical</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Technology</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkF1LwzAUhoMofkx_gSC5FGTzJGmT9lLGdIIo-HEnlDRNNNI1M0nV_XszN8Ur8SoH8rznvDwIHRIYEaDkVKowepmrVsc4KmtgnLINtEvKrBgKUuSbv-YdtBfCCwAvoRDbaIdRQktOxS56nNqn53aB76KXttMNPuvxtezcXPpo0-6AjfP4cjb37i39TlqtondKRtkugg3YGTyJzynQ4psP28hoXYdvtVTLYR9tGdkGfbB-B-jhfHI_ng6vbi4ux2dXQ5kREocqE0qXwPOmYQy4yYQRysiGZDmlZVnqJueQE1XUnGQFqzMuTV2IGrTIKUhgA3S82ptavvY6xGpmg9JtKzvt-lBRJghJpzKaULZClXcheG2qubcz6RcVgWqptUpaq7XWaq01pY7WB_p6ppufzLfHBBQr4F3XzgRldaf0DwYAOeUsZ2kARsc2fnkau76LKXry_2iiT1f0V03X-y6J_bP7J68hp7o</recordid><startdate>20200416</startdate><enddate>20200416</enddate><creator>Cao, Xun</creator><creator>Li, Chaojiang</creator><creator>Peng, Dongdong</creator><creator>Lu, Yu</creator><creator>Huang, Kang</creator><creator>Wu, Junsheng</creator><creator>Zhao, Chunwang</creator><creator>Huang, Yizhong</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6034-381X</orcidid><orcidid>https://orcid.org/0000-0002-0135-6792</orcidid><orcidid>https://orcid.org/0000-0003-2644-856X</orcidid></search><sort><creationdate>20200416</creationdate><title>Highly Strained Au Nanoparticles for Improved Electrocatalysis of Ethanol Oxidation Reaction</title><author>Cao, Xun ; Li, Chaojiang ; Peng, Dongdong ; Lu, Yu ; Huang, Kang ; Wu, Junsheng ; Zhao, Chunwang ; Huang, Yizhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a411t-c47ce9065dd3306f47f7cfad14522999ed56051c8b61483b46afb87b0e7520a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience & Nanotechnology</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Atomic, Molecular & Chemical</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Xun</creatorcontrib><creatorcontrib>Li, Chaojiang</creatorcontrib><creatorcontrib>Peng, Dongdong</creatorcontrib><creatorcontrib>Lu, Yu</creatorcontrib><creatorcontrib>Huang, Kang</creatorcontrib><creatorcontrib>Wu, Junsheng</creatorcontrib><creatorcontrib>Zhao, Chunwang</creatorcontrib><creatorcontrib>Huang, Yizhong</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Xun</au><au>Li, Chaojiang</au><au>Peng, Dongdong</au><au>Lu, Yu</au><au>Huang, Kang</au><au>Wu, Junsheng</au><au>Zhao, Chunwang</au><au>Huang, Yizhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Strained Au Nanoparticles for Improved Electrocatalysis of Ethanol Oxidation Reaction</atitle><jtitle>The journal of physical chemistry letters</jtitle><stitle>J PHYS CHEM LETT</stitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2020-04-16</date><risdate>2020</risdate><volume>11</volume><issue>8</issue><spage>3005</spage><epage>3013</epage><pages>3005-3013</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Au is an ideal noble metal for use as an electrocatalyst for the ethanol oxidation reaction owing to its high performance-to-cost ratio. The catalyst usually exists as nanoparticles (NPs) for high surface area-to-volume ratio. In the present work, a nontraditional physical approach has been developed to fabricate ultrasmall and homogeneous single-crystalline Au NPs by ion bombardment in a precision ion polishing system. Transmission electron microscopy characterizations show that the Au NPs produced with 5 keV Ar+ are highly strained to form twinned crystals, which accumulate a large amount of surface energy, and this was found to be an underlying reason causing strong catalysis. Electrochemistry tests reveal that in alkaline medium the C1 pathway occurs much more preferentially with the strained Au NPs than the normal Au NPs. The surface area-to-volume ratio is no longer the only factor that affects the performance; instead, surface energy might play a more important role in enhancing the catalytic activities.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><pmid>32129627</pmid><doi>10.1021/acs.jpclett.9b03623</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6034-381X</orcidid><orcidid>https://orcid.org/0000-0002-0135-6792</orcidid><orcidid>https://orcid.org/0000-0003-2644-856X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2020-04, Vol.11 (8), p.3005-3013 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_acs_journals_10_1021_acs_jpclett_9b03623 |
source | ACS Publications; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Chemistry Chemistry, Physical Materials Science Materials Science, Multidisciplinary Nanoscience & Nanotechnology Physical Sciences Physics Physics, Atomic, Molecular & Chemical Science & Technology Science & Technology - Other Topics Technology |
title | Highly Strained Au Nanoparticles for Improved Electrocatalysis of Ethanol Oxidation Reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T07%3A36%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Strained%20Au%20Nanoparticles%20for%20Improved%20Electrocatalysis%20of%20Ethanol%20Oxidation%20Reaction&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Cao,%20Xun&rft.date=2020-04-16&rft.volume=11&rft.issue=8&rft.spage=3005&rft.epage=3013&rft.pages=3005-3013&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.9b03623&rft_dat=%3Cproquest_acs_j%3E2371141142%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2371141142&rft_id=info:pmid/32129627&rfr_iscdi=true |