Highly Strained Au Nanoparticles for Improved Electrocatalysis of Ethanol Oxidation Reaction

Au is an ideal noble metal for use as an electrocatalyst for the ethanol oxidation reaction owing to its high performance-to-cost ratio. The catalyst usually exists as nanoparticles (NPs) for high surface area-to-volume ratio. In the present work, a nontraditional physical approach has been develope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2020-04, Vol.11 (8), p.3005-3013
Hauptverfasser: Cao, Xun, Li, Chaojiang, Peng, Dongdong, Lu, Yu, Huang, Kang, Wu, Junsheng, Zhao, Chunwang, Huang, Yizhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Au is an ideal noble metal for use as an electrocatalyst for the ethanol oxidation reaction owing to its high performance-to-cost ratio. The catalyst usually exists as nanoparticles (NPs) for high surface area-to-volume ratio. In the present work, a nontraditional physical approach has been developed to fabricate ultrasmall and homogeneous single-crystalline Au NPs by ion bombardment in a precision ion polishing system. Transmission electron microscopy characterizations show that the Au NPs produced with 5 keV Ar+ are highly strained to form twinned crystals, which accumulate a large amount of surface energy, and this was found to be an underlying reason causing strong catalysis. Electrochemistry tests reveal that in alkaline medium the C1 pathway occurs much more preferentially with the strained Au NPs than the normal Au NPs. The surface area-to-volume ratio is no longer the only factor that affects the performance; instead, surface energy might play a more important role in enhancing the catalytic activities.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.9b03623