Intercalation of Lithium Ions from Gaseous Precursors into β‑MnO2 Thin Films Deposited by Atomic Layer Deposition
LiMn2O4 is a promising candidate for a cathode material in lithium-ion batteries because of its ability to intercalate lithium ions reversibly through its three-dimensional manganese oxide network. One of the promising techniques for depositing LiMn2O4 thin-film cathodes is atomic layer deposition (...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2019-06, Vol.123 (25), p.15802-15814 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | LiMn2O4 is a promising candidate for a cathode material in lithium-ion batteries because of its ability to intercalate lithium ions reversibly through its three-dimensional manganese oxide network. One of the promising techniques for depositing LiMn2O4 thin-film cathodes is atomic layer deposition (ALD). Because of its unparalleled film thickness control and film conformality, ALD helps to fulfill the industry demands for smaller devices, nanostructured electrodes, and all-solid-state batteries. In this work, the intercalation mechanism of Li+ ions into an ALD-grown β-MnO2 thin film was studied. Samples were prepared by pulsing LiO t Bu and H2O for different cycle numbers onto about 100 nm thick MnO2 films at 225 °C and characterized with X-ray absorption spectroscopy, X-ray diffraction, X-ray reflectivity, time-of-flight elastic recoil detection analysis, and residual stress measurements. It is proposed that for |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/acs.jpcc.9b03039 |