CH3NH3PbI3 and CH3NH3PbI3–x Cl x in Planar or Mesoporous Perovskite Solar Cells: Comprehensive Insight into the Dependence of Performance on Architecture
In perovskite solar cells (PSCs), issues of compatibility between the photoabsorber and the cell architecture arise. In this work, we systematically demonstrated the characteristics of PSCs with an organometal halide, CH3NH3PbI3 or CH3NH3PbI3–x Cl x , in a planar or mesoporous architecture, and the...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2015-07, Vol.119 (28), p.15868-15873 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In perovskite solar cells (PSCs), issues of compatibility between the photoabsorber and the cell architecture arise. In this work, we systematically demonstrated the characteristics of PSCs with an organometal halide, CH3NH3PbI3 or CH3NH3PbI3–x Cl x , in a planar or mesoporous architecture, and the dependence of the cell photovoltaic performance on the architecture was illustrated in detail. In addition to the inherent photoelectric characteristics, CH3NH3PbI3 and CH3NH3PbI3–x Cl x also differ in other aspects, such as light absorption, crystallinity, surface coverage, and dissociation of the photogenerated electrons. For PSCs with CH3NH3PbI3, the mesoporous ones gave high power conversion efficiencies (PCE) of up to 14.05%, which is much higher than those of the planar ones (up to 6.76%). For PSCs with CH3NH3PbI3–x Cl x , the planar and mesoporous devices exhibited PCEs of up to 12.67% and 7.87%, respectively, quite in contrast with the case of CH3NH3PbI3. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/acs.jpcc.5b02784 |