Improved Uncertainty Estimation of Graph Neural Network Potentials Using Engineered Latent Space Distances
Graph neural networks (GNNs) have been shown to be astonishingly capable models for molecular property prediction, particularly as surrogates for expensive density functional theory calculations of relaxed energy for novel material discovery. However, one limitation of GNNs in this context is the la...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2024-12, Vol.128 (49), p.20799-20810 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Graph neural networks (GNNs) have been shown to be astonishingly capable models for molecular property prediction, particularly as surrogates for expensive density functional theory calculations of relaxed energy for novel material discovery. However, one limitation of GNNs in this context is the lack of useful uncertainty prediction methods, as this is critical to the material discovery pipeline. In this work, we show that uncertainty quantification for relaxed energy calculations is more complex than uncertainty quantification for other kinds of molecular property prediction due to the effect that structure optimizations have on the error distribution. We propose that distribution-free techniques are more useful tools for assessing calibration, recalibrating, and developing uncertainty prediction methods for GNNs performing relaxed energy calculations. We also develop a relaxed energy task for evaluating uncertainty methods for equivariant GNNs, based on distribution-free recalibration and using the Open Catalyst Project data set. We benchmark a set of popular uncertainty prediction methods on this task and show that conformal prediction methods, with our novel latent space distance improvements, are the most well-calibrated and efficient approach for relaxed energy calculations. Finally, we demonstrate that our latent space distance method produces results which align with our expectations on an atom clustering example, and on specific equation of state and adsorbate coverage examples from outside the training data set. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/acs.jpcc.4c04972 |