High-Temperature Reaction Mechanism of NH3‑SCR over Cu-CHA: One or Two Copper Ions?

Cu-exchanged chabazite (Cu-CHA) shows good performance for selective catalytic reduction of nitrogen oxides using NH3 as a reducing agent (NH3-SCR). The temperature dependence of the activity has a characteristic nonmonotonic behavior with a minimum in the range 300–350 °C. The minimum signals that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2024-04, Vol.128 (16), p.6689-6701
Hauptverfasser: Feng, Yingxin, Janssens, Ton V. W., Vennestrøm, Peter N. R., Jansson, Jonas, Skoglundh, Magnus, Grönbeck, Henrik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cu-exchanged chabazite (Cu-CHA) shows good performance for selective catalytic reduction of nitrogen oxides using NH3 as a reducing agent (NH3-SCR). The temperature dependence of the activity has a characteristic nonmonotonic behavior with a minimum in the range 300–350 °C. The minimum signals that different reaction mechanisms or active sites dominate at low and high temperatures. The low-temperature mechanism is believed to occur over a pair of mobile [Cu­(NH3)2]+ complexes, whereas the high-temperature mechanism should proceed over framework-bound Cu ions. To explore the NH3-SCR reaction over framework-bound Cu ions, we use first-principles calculations combined with mean-field microkinetic simulations. We find that the reaction proceeds over a single framework-bound Cu ion and that the first step is NO and O2 coadsorption. The coadsorption competes with NH3 adsorption, and the NH3-SCR rate is largely determined by the adsorption energy of NH3. Combining the high-temperature kinetic model with our previous low-temperature model for NH3-SCR over pairs of mobile [Cu­(NH3)2]+ complexes makes it possible to describe the nonmonotonic behavior of the reaction rate. The work provides a detailed mechanistic understanding of the role and transformation of different forms of Cu ions during low- and high-temperature standard SCR in Cu-CHA.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.4c00554