High-Temperature Reaction Mechanism of NH3‑SCR over Cu-CHA: One or Two Copper Ions?
Cu-exchanged chabazite (Cu-CHA) shows good performance for selective catalytic reduction of nitrogen oxides using NH3 as a reducing agent (NH3-SCR). The temperature dependence of the activity has a characteristic nonmonotonic behavior with a minimum in the range 300–350 °C. The minimum signals that...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2024-04, Vol.128 (16), p.6689-6701 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cu-exchanged chabazite (Cu-CHA) shows good performance for selective catalytic reduction of nitrogen oxides using NH3 as a reducing agent (NH3-SCR). The temperature dependence of the activity has a characteristic nonmonotonic behavior with a minimum in the range 300–350 °C. The minimum signals that different reaction mechanisms or active sites dominate at low and high temperatures. The low-temperature mechanism is believed to occur over a pair of mobile [Cu(NH3)2]+ complexes, whereas the high-temperature mechanism should proceed over framework-bound Cu ions. To explore the NH3-SCR reaction over framework-bound Cu ions, we use first-principles calculations combined with mean-field microkinetic simulations. We find that the reaction proceeds over a single framework-bound Cu ion and that the first step is NO and O2 coadsorption. The coadsorption competes with NH3 adsorption, and the NH3-SCR rate is largely determined by the adsorption energy of NH3. Combining the high-temperature kinetic model with our previous low-temperature model for NH3-SCR over pairs of mobile [Cu(NH3)2]+ complexes makes it possible to describe the nonmonotonic behavior of the reaction rate. The work provides a detailed mechanistic understanding of the role and transformation of different forms of Cu ions during low- and high-temperature standard SCR in Cu-CHA. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/acs.jpcc.4c00554 |